论文标题

ekeland差异原理及其等效物在$ t_1 $ -quasi均匀的空间

Ekeland variational principle and its equivalents in $T_1$-quasi-uniform spaces

论文作者

Cobzas, S.

论文摘要

本文涉及ekeland差异原理(EKVP)及其等效物(Caristi-Kirk固定点定理,高桥最小化原理,ekvp的oettli-théra平衡版本)在准均匀的空间中。这些扩展了非线性肛门Hamel证明的一些结果。 \ textbf {62}(2005),913--924,在统一空间中,以及各种作者在准中空间中证明的空间。 $ f $ -quasi-gauge空间的情况,这是Fang,J。Math引入的$ f $ gouge空间的非对称版本。肛门。应用。 \ textbf {202}(1996),398--412也被考虑。本文以Arutyunov和Zh的Gel'man证明的一些最小化原则的准均匀版本结尾。维奇斯。垫。垫。 fiz。 \ textbf {49}(2009),1167--1174和Arutyunov,Proc。 Steklov Inst。数学。 \ textbf {291}(2015),第〜1、24--37号,在完整的度量空间中。 关键词:Ekeland差异原理,高桥最小化原理,平衡问题,均匀的空间,准统一空间,量规空间,准岩石空间,准均匀空间的完整性

The present paper is concerned with Ekeland Variational Principle (EkVP) and its equivalents (Caristi-Kirk fixed point theorem, Takahashi minimization principle, Oettli-Théra equilibrium version of EkVP) in quasi-uniform spaces. These extend some results proved by Hamel, Nonlinear Anal. \textbf{62} (2005), 913--924, in uniform spaces, as well as those proved in quasi-metric spaces by various authors. The case of $F$-quasi-gauge spaces, a non-symmetric version of $F$-gauge spaces introduced by Fang, J. Math. Anal. Appl. \textbf{202} (1996), 398--412, is also considered. The paper ends with the quasi-uniform versions of some minimization principles proved by Arutyunov and Gel'man, Zh. Vychisl. Mat. Mat. Fiz. \textbf{49} (2009), 1167--1174, and Arutyunov, Proc. Steklov Inst. Math. \textbf{291} (2015), no.~1, 24--37, in complete metric spaces. Key words: Ekeland Variational Principle, Takahashi minimization principle, equilibrium problems, uniform spaces, quasi-uniform spaces, gauge spaces, quasi-gauge spaces, completeness in quasi-uniform spaces

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源