论文标题

使用异构标签和用于移动活动监控的模型的联合学习

Federated Learning with Heterogeneous Labels and Models for Mobile Activity Monitoring

论文作者

Gudur, Gautham Krishna, Perepu, Satheesh K.

论文摘要

各种医疗保健应用,例如辅助生活,跌倒检测等,都需要通过人类活动识别(HAR)对用户行为进行建模。此类应用程序要求使用机器学习技术从多个资源受限的用户设备中表征洞察力,以进行有效的个性化活动监控。事实证明,联合学习的设备被证明是分布式和协作机器学习的有效方法。但是,解决用户之间的统计(非IID数据)和模型异质性方面存在各种挑战。此外,在本文中,我们探讨了一个新的兴趣挑战 - 在联邦学习过程中处理跨用户的标签(活动)的异质性。为此,我们为联合标签的聚合提供了一个框架,该框架利用模型蒸馏更新来利用活动重叠的信息增益。我们还建议,联合的模型分数传输就足够了,而不是模型重量转移从设备到服务器。具有异质性人类活动识别(HHAR)数据集的经验评估(有四个活动以有效阐明结果)在Raspberry Pi 2上表明,平均确定性准确性提高至少〜11.01%,从而证明了我们所提出的框架的远景功能。

Various health-care applications such as assisted living, fall detection, etc., require modeling of user behavior through Human Activity Recognition (HAR). Such applications demand characterization of insights from multiple resource-constrained user devices using machine learning techniques for effective personalized activity monitoring. On-device Federated Learning proves to be an effective approach for distributed and collaborative machine learning. However, there are a variety of challenges in addressing statistical (non-IID data) and model heterogeneities across users. In addition, in this paper, we explore a new challenge of interest -- to handle heterogeneities in labels (activities) across users during federated learning. To this end, we propose a framework for federated label-based aggregation, which leverages overlapping information gain across activities using Model Distillation Update. We also propose that federated transfer of model scores is sufficient rather than model weight transfer from device to server. Empirical evaluation with the Heterogeneity Human Activity Recognition (HHAR) dataset (with four activities for effective elucidation of results) on Raspberry Pi 2 indicates an average deterministic accuracy increase of at least ~11.01%, thus demonstrating the on-device capabilities of our proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源