论文标题
惰性气体混合物的一般一致BGK模型的保守半拉格朗日方案
Conservative semi-Lagrangian schemes for a general consistent BGK model for inert gas mixtures
论文作者
论文摘要
在这项工作中,我们为惰性气体混合物的一般BGK模型提出了一类高级半拉格朗日方案。所提出的方案不仅符合漠不关的性原则,而且还符合渐近保存特性,这使我们能够捕获流体动力极限模型的行为。我们考虑了两个流体动力闭合,可以从BGK模型出发:数量密度,全局速度和温度以及多速度和温度Euler系统的经典Euler方程。进行数值模拟以证明拟议的保守半拉格朗日方案的无差异性原理和渐近保存属性。
In this work, we propose a class of high order semi-Lagrangian scheme for a general consistent BGK model for inert gas mixtures. The proposed scheme not only fulfills indifferentiability principle, but also asymptotic preserving property, which allows us to capture the behaviors of hydrodynamic limit models. We consider two hydrodynamic closure which can be derived from the BGK model at leading order: classical Euler equations for number densities, global velocity and temperature, and a multi-velocities and temperatures Euler system. Numerical simulations are performed to demonstrate indifferentiability principle and asymptotic preserving property of the proposed conservative semi-Lagrangian scheme to the Euler limits.