论文标题

用于光声重建的连接特征融合框架

A Jointed Feature Fusion Framework for Photoacoustic Reconstruction

论文作者

Lan, Hengrong, Yang, Changchun, Gao, Fei

论文摘要

光声(PA)计算机断层扫描(PACT)重建了来自RAW PA信号的初始压力分布。医疗图像的标准重建可能会导致由于干扰或设置不足而引起的工件。最近,深度学习已被用来以不适的条件重建PA图像。大多数作品从图像域中删除工件,并从数据集中补偿限量视图。在本文中,我们提出了一个基于深度学习的连接特征融合框架(Jeff-net),以使用有限视图数据重建PA图像。限量视图数据和重建图像的跨域特征通过回溯监督融合。具体而言,我们的结果可能会产生出色的性能,与地面真相相比,其产物的伪像大幅度降低了(全视图重建结果)。在本文中,将四分之一的位置数据(32个通道)输入到模型中,该模型输出了另一个四分之一的视图数据(96个通道)。此外,设计了两次新型损失,以通过足够操纵超座的数据来限制伪影。数值和体内的结果证明了我们的方法的出色性能,可以重建无伪影的全视图图像。最后,定量评估表明,我们所提出的方法在某些指标中的表现优于地面真相。

Photoacoustic (PA) computed tomography (PACT) reconstructs the initial pressure distribution from raw PA signals. The standard reconstruction of medical image could cause the artifacts due to interferences or ill-posed setup. Recently, deep learning has been used to reconstruct the PA image with ill-posed conditions. Most works remove the artifacts from image domain, and compensate the limited-view from dataset. In this paper, we propose a jointed feature fusion framework (JEFF-Net) based on deep learning to reconstruct the PA image using limited-view data. The cross-domain features from limited-view position-wise data and the reconstructed image are fused by a backtracked supervision. Specifically, our results could generate superior performance, whose artifacts are drastically reduced in the output compared to ground-truth (full-view reconstructed result). In this paper, a quarter position-wise data (32 channels) is fed into model, which outputs another 3-quarters-view data (96 channels). Moreover, two novel losses are designed to restrain the artifacts by sufficiently manipulating superposed data. The numerical and in-vivo results have demonstrated the superior performance of our method to reconstruct the full-view image without artifacts. Finally, quantitative evaluations show that our proposed method outperformed the ground-truth in some metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源