论文标题
P3-LOAM:PPP/LIDAR松散耦合大满贯,并在Urban Canyon环境中进行准确的协方差估计和强大的RAIM
P3-LOAM: PPP/LiDAR Loosely Coupled SLAM with Accurate Covariance Estimation and Robust RAIM in Urban Canyon Environment
论文作者
论文摘要
基于光检测和范围(LIDAR)的同时定位和映射(SLAM)吸引了对自主驾驶的兴趣。但是,LiDAR-SLAM遭受了积累的错误,可以通过全球导航卫星系统(GNSS)大大减轻这些错误。精确的点定位(PPP)是一种独立于基站的精确GNSS操作模式,在无人系统中获得了更多的知名度。考虑到这两种技术的特征,即Lidar-Slam和PPP,本文提出了一个SLAM系统,即P3-loam(基于PPP的激光镜和映射),将LIDAR-SLAM和PPP系在一起。为了更好地整合,我们通过使用单数值分解(SVD)Jacobian模型来得出Lidar-Slam定位协方差,因为SVD提供了迭代最接近点(ICP)的明确分析解决方案,这是LIDAR-SLAM中的关键问题。然后提出了一种新颖的方法来评估估计的LiDAR-SLAM协方差。此外,为了提高GNS在Urban Canyon环境中的可靠性,我们开发了Lidar-Slam辅助GNSS接收器自动完整性监测(RAIM)算法。最后,我们用Urbannav验证了P $^3 $ -LOAM,这是城市峡谷环境中充满挑战的公共数据集。全面的测试结果证明,P3-LOAM优于单点定位(SPP),PPP,LEGO-LOAM,SPP-LOAM和松散耦合导航系统,就准确性和可用性而言提出的松散耦合导航系统。
Light Detection and Ranging (LiDAR) based Simultaneous Localization and Mapping (SLAM) has drawn increasing interests in autonomous driving. However, LiDAR-SLAM suffers from accumulating errors which can be significantly mitigated by Global Navigation Satellite System (GNSS). Precise Point Positioning (PPP), an accurate GNSS operation mode independent of base stations, gains more popularity in unmanned systems. Considering the features of the two technologies, LiDAR-SLAM and PPP, this paper proposes a SLAM system, namely P3-LOAM (PPP based LiDAR Odometry and Mapping) which couples LiDAR-SLAM and PPP. For better integration, we derive LiDAR-SLAM positioning covariance by using Singular Value Decomposition (SVD) Jacobian model, since SVD provides an explicit analytic solution of Iterative Closest Point (ICP), which is a key issue in LiDAR-SLAM. A novel method is then proposed to evaluate the estimated LiDAR-SLAM covariance. In addition, to increase the reliability of GNSS in urban canyon environment, we develop a LiDAR-SLAM assisted GNSS Receiver Autonomous Integrity Monitoring (RAIM) algorithm. Finally, we validate P$^3$-LOAM with UrbanNav, a challenging public dataset in urban canyon environment. Comprehensive test results prove that P3-LOAM outperforms benchmarks such as Single Point Positioning (SPP), PPP, LeGO-LOAM, SPP-LOAM, and loosely coupled navigation system proposed by the publisher of UrbanNav in terms of accuracy and availability.