论文标题

有偏见的程序员?还是偏见的数据?在操作AI伦理方面的现场实验

Biased Programmers? Or Biased Data? A Field Experiment in Operationalizing AI Ethics

论文作者

Cowgill, Bo, Dell'Acqua, Fabrizio, Deng, Samuel, Hsu, Daniel, Verma, Nakul, Chaintreau, Augustin

论文摘要

为什么会出现偏见的预测?哪些干预措施可以防止它们?我们评估了820万算法的数学性能预测,从$ \ $ \ $ \ $ 400 AI工程师,每个工程师都在随机分配的实验条件下开发了算法。我们的治疗武器修改了程序员的激励措施,培训数据,意识和/或AI伦理技术知识。然后,我们使用算法输入的随机审核操纵和20K受试者的地面数学性能评估样本外的算法预测。我们发现,偏见的预测主要是由偏见的培训数据引起的。但是,更好的培训数据的好处是三分之一,这是通过一种新颖的经济机制:工程师更大的努力,并且在获得更好的培训数据时对激励措施的反应更加敏感。我们还评估了绩效如何随程序员的人口特征而变化,以及它们在关于性别和职业的隐性偏见(IAT)的心理测试中的表现。我们没有发现女性,少数和低级工程师在其法规中表现出较低的偏见或歧视。但是,我们确实发现预测错误在人口统计组中是相关的,这可以通过跨人口统计学平均来改善绩效。最后,我们量化了实用管理或政策干预措施的收益和权衡,例如技术建议,简单的提醒和改善算法偏见的激励措施。

Why do biased predictions arise? What interventions can prevent them? We evaluate 8.2 million algorithmic predictions of math performance from $\approx$400 AI engineers, each of whom developed an algorithm under a randomly assigned experimental condition. Our treatment arms modified programmers' incentives, training data, awareness, and/or technical knowledge of AI ethics. We then assess out-of-sample predictions from their algorithms using randomized audit manipulations of algorithm inputs and ground-truth math performance for 20K subjects. We find that biased predictions are mostly caused by biased training data. However, one-third of the benefit of better training data comes through a novel economic mechanism: Engineers exert greater effort and are more responsive to incentives when given better training data. We also assess how performance varies with programmers' demographic characteristics, and their performance on a psychological test of implicit bias (IAT) concerning gender and careers. We find no evidence that female, minority and low-IAT engineers exhibit lower bias or discrimination in their code. However, we do find that prediction errors are correlated within demographic groups, which creates performance improvements through cross-demographic averaging. Finally, we quantify the benefits and tradeoffs of practical managerial or policy interventions such as technical advice, simple reminders, and improved incentives for decreasing algorithmic bias.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源