论文标题

最佳的贝叶斯分层模型,以加速组织 - 非稳定药物和篮子试验的发展

Optimal Bayesian hierarchical model to accelerate the development of tissue-agnostic drugs and basket trials

论文作者

Jiang, Liyun, Nie, Lei, Yan, Fangrong, Yuan, Ying

论文摘要

组织反应试验根据其遗传生物标志物而非肿瘤类型的患者招募患者,以确定新药是否可以基于生物标志物成功治疗疾病状况。贝叶斯分层模型(BHM)通过允许跨多种疾病类型的信息借用的信息来设计II期组织不合时宜的试验的有吸引力的方法。在本文中,我们阐明了两个固有和不可避免的问题,这些问题可能限制了BHM对组织 - 敏锐的试验的使用:对收缩参数的先前规范的敏感性以及疾病类型之间在增加功率和控制I型错误中的疾病类型之间的“兴趣”。为了解决这些问题,我们提出了最佳BHM(OBHM)方法。使用OBHM,我们首先指定一个灵活的效用函数,以根据研究目标量化I型误差和功率之间的权衡之间的权衡,然后选择收缩参数的先验,以优化临床和调节兴趣的效用功能。 OBMH有效地平衡了I型和II误差,解决了先前选择的敏感性,并降低了先前选择中的“不必要”主观性。仿真研究表明,所得的OBHM及其扩展,群集OBHM(COBHM)和自适应OBHM(AOBHM)具有理想的操作特性,优于某些具有更好平衡功率和I型I错误控制的现有方法。我们的方法提供了一种系统的严格方法来应用BHM并解决使用非信息逆伽马之前(具有较大差异)或任意选择可能导致病理统计特性的先验的常见问题。

Tissue-agnostic trials enroll patients based on their genetic biomarkers, not tumor type, in an attempt to determine if a new drug can successfully treat disease conditions based on biomarkers. The Bayesian hierarchical model (BHM) provides an attractive approach to design phase II tissue-agnostic trials by allowing information borrowing across multiple disease types. In this article, we elucidate two intrinsic and inevitable issues that may limit the use of BHM to tissue-agnostic trials: sensitivity to the prior specification of the shrinkage parameter and the competing "interest" among disease types in increasing power and controlling type I error. To address these issues, we propose the optimal BHM (OBHM) approach. With OBHM, we first specify a flexible utility function to quantify the tradeoff between type I error and power across disease type based on the study objectives, and then we select the prior of the shrinkage parameter to optimize the utility function of clinical and regulatory interest. OBMH effectively balances type I and II errors, addresses the sensitivity of the prior selection, and reduces the "unwarranted" subjectivity in the prior selection. Simulation study shows that the resulting OBHM and its extensions, clustered OBHM (COBHM) and adaptive OBHM (AOBHM), have desirable operating characteristics, outperforming some existing methods with better balanced power and type I error control. Our method provides a systematic, rigorous way to apply BHM and solve the common problem of blindingly using a non-informative inverse-gamma prior (with a large variance) or priors arbitrarily chosen that may lead to pathological statistical properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源