论文标题

光学波长引导的自我监督的特征学习,用于银河集群丰富度估算值

Optical Wavelength Guided Self-Supervised Feature Learning For Galaxy Cluster Richness Estimate

论文作者

Liang, Gongbo, Su, Yuanyuan, Lin, Sheng-Chieh, Zhang, Yu, Zhang, Yuanyuan, Jacobs, Nathan

论文摘要

附近宇宙中的大多数星系在重力上都与簇或一组星系结合。它们的光学内容(例如光学丰富度)对于理解现代天文学和宇宙学中星系和大规模结构的共同发展至关重要。光学丰富度的确定可能具有挑战性。我们提出了一种自我监督的方法,用于估计多波段光学图像的光学丰富度。该方法使用多波段光学图像的数据属性进行预训练,从而从大型但未标记的数据集中启用学习特征表示。我们将建议的方法应用于斯隆数字天空调查。结果表明,我们对光学丰富度的估计值将平均绝对误差和内在散布降低了11.84%和20.78%,同时将标记的培训数据的需求降低了60%。我们认为,所提出的方法将使天文学和宇宙学有益于大量未标记的多波段图像,但是获取图像标签的成本很高。

Most galaxies in the nearby Universe are gravitationally bound to a cluster or group of galaxies. Their optical contents, such as optical richness, are crucial for understanding the co-evolution of galaxies and large-scale structures in modern astronomy and cosmology. The determination of optical richness can be challenging. We propose a self-supervised approach for estimating optical richness from multi-band optical images. The method uses the data properties of the multi-band optical images for pre-training, which enables learning feature representations from a large but unlabeled dataset. We apply the proposed method to the Sloan Digital Sky Survey. The result shows our estimate of optical richness lowers the mean absolute error and intrinsic scatter by 11.84% and 20.78%, respectively, while reducing the need for labeled training data by up to 60%. We believe the proposed method will benefit astronomy and cosmology, where a large number of unlabeled multi-band images are available, but acquiring image labels is costly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源