论文标题

划分和学习:预测+优化的划分和征服方法

Divide and Learn: A Divide and Conquer Approach for Predict+Optimize

论文作者

Guler, Ali Ugur, Demirovic, Emir, Chan, Jeffrey, Bailey, James, Leckie, Christopher, Stuckey, Peter J.

论文摘要

预测+优化问题将机器系数与使用预测系数的组合优化概率结合了机器学习。尽管该问题可以在两个单独的阶段解决,但最好直接量化优化损失。但是,这需要通过离散的,非差异的组合功能进行分歧。大多数现有的方法都使用某种形式的散发梯度。 Demirovicet恶意如何将优化问题的丢失直接表达为按预先的系数作为零件线性函数。但是,他们的方法仅限于优化问题。在这项工作中,新颖的鸿沟和征服算法可以解决操作问题,而无需这种限制,并使用优化损失预测其发重。我们还介绍了这种方法的一致版本,该方法以较少的计算实现了类似的重新效果。我们将方法与其他方法进行比较,以预测+优化问题,并且与其他预测+优化方法相比,我们可以成功解决一些硬组合问题。

The predict+optimize problem combines machine learning ofproblem coefficients with a combinatorial optimization prob-lem that uses the predicted coefficients. While this problemcan be solved in two separate stages, it is better to directlyminimize the optimization loss. However, this requires dif-ferentiating through a discrete, non-differentiable combina-torial function. Most existing approaches use some form ofsurrogate gradient. Demirovicet alshowed how to directlyexpress the loss of the optimization problem in terms of thepredicted coefficients as a piece-wise linear function. How-ever, their approach is restricted to optimization problemswith a dynamic programming formulation. In this work wepropose a novel divide and conquer algorithm to tackle op-timization problems without this restriction and predict itscoefficients using the optimization loss. We also introduce agreedy version of this approach, which achieves similar re-sults with less computation. We compare our approach withother approaches to the predict+optimize problem and showwe can successfully tackle some hard combinatorial problemsbetter than other predict+optimize methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源