论文标题
多个对象跟踪的概率跟踪和介入
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking
论文作者
论文摘要
尽管通过联合检测和跟踪实现了多个对象跟踪(MOT)的最新进展,但处理长期遮挡仍然是一个挑战。这是由于这样的技术倾向于忽略长期运动信息。在本文中,我们引入了一种概率自回归运动模型,以直接测量其可能性来评分轨道建议。这是通过训练我们的模型学习自然踪迹的基本分布来实现的。因此,我们的模型不仅使我们不仅可以为现有曲目分配新的检测,而且还可以在很长一段时间内丢失对象时(例如,由于遮挡)来对轨迹进行分配,以填补误导性引起的空白。我们的实验证明了我们方法在充满挑战的序列中跟踪对象的优越性。在多个MOT基准数据集(包括MOT16,MOT17和MOT20)的大多数标准MOT指标中,它的表现优于最先进的MOT指标。
Despite the recent advances in multiple object tracking (MOT), achieved by joint detection and tracking, dealing with long occlusions remains a challenge. This is due to the fact that such techniques tend to ignore the long-term motion information. In this paper, we introduce a probabilistic autoregressive motion model to score tracklet proposals by directly measuring their likelihood. This is achieved by training our model to learn the underlying distribution of natural tracklets. As such, our model allows us not only to assign new detections to existing tracklets, but also to inpaint a tracklet when an object has been lost for a long time, e.g., due to occlusion, by sampling tracklets so as to fill the gap caused by misdetections. Our experiments demonstrate the superiority of our approach at tracking objects in challenging sequences; it outperforms the state of the art in most standard MOT metrics on multiple MOT benchmark datasets, including MOT16, MOT17, and MOT20.