论文标题

BoxInst:带有框注释的高性能实例分割

BoxInst: High-Performance Instance Segmentation with Box Annotations

论文作者

Tian, Zhi, Shen, Chunhua, Wang, Xinlong, Chen, Hao

论文摘要

我们提出了一种高性能方法,该方法可以实现掩模级别的实例分割,仅用于培训的边界框注释。尽管在文献中已经研究了这种设置,但在这里,我们通过简单的设计显示出更强的性能(例如,HSU等人(2019年)在可可数据集中显着提高了以前的最佳报告的蒙版AP,为21.1%(2019年)至31.6%。我们的核心思想是重新设计在实例细分中学习口罩的丢失,而没有修改分割网络本身。新的损失功能可以监督面具训练而不依赖面具注释。通过两个损失条款,1)替代术语可以最大程度地减少地面框架和预测面具之间的差异; 2)一个可以利用先验的成对损失,具有相似颜色的近端像素很可能具有相同的类别标签。实验表明,重新设计的面具丢失可以产生仅带有框注释的高质量实例掩模。例如,不使用任何蒙版注释,具有RESNET-101主链和3倍培训时间表,我们在可可Test-DEV拆分上获得了33.2%的掩码AP(vs.的39.1%,占完全监督的对应物)。我们对可可和Pascal VOC的出色实验结果表明,我们的方法显着缩小了弱和完全监督的实例分割之间的性能差距。 代码可在以下网址找到:https://git.io/adelaidet

We present a high-performance method that can achieve mask-level instance segmentation with only bounding-box annotations for training. While this setting has been studied in the literature, here we show significantly stronger performance with a simple design (e.g., dramatically improving previous best reported mask AP of 21.1% in Hsu et al. (2019) to 31.6% on the COCO dataset). Our core idea is to redesign the loss of learning masks in instance segmentation, with no modification to the segmentation network itself. The new loss functions can supervise the mask training without relying on mask annotations. This is made possible with two loss terms, namely, 1) a surrogate term that minimizes the discrepancy between the projections of the ground-truth box and the predicted mask; 2) a pairwise loss that can exploit the prior that proximal pixels with similar colors are very likely to have the same category label. Experiments demonstrate that the redesigned mask loss can yield surprisingly high-quality instance masks with only box annotations. For example, without using any mask annotations, with a ResNet-101 backbone and 3x training schedule, we achieve 33.2% mask AP on COCO test-dev split (vs. 39.1% of the fully supervised counterpart). Our excellent experiment results on COCO and Pascal VOC indicate that our method dramatically narrows the performance gap between weakly and fully supervised instance segmentation. Code is available at: https://git.io/AdelaiDet

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源