论文标题
使用贝叶斯模型选择检测恒星形成的发作
Detecting episodes of star formation using Bayesian model selection
论文作者
论文摘要
贝叶斯模型比较框架可以在将模型拟合到数据时使用,以便以数据驱动的方式推断适当的模型复杂性。我们的目的是通过它们从星系的光谱能量分布(SED)的分析中检测到正确数量的恒星形成,在Z〜1时以3D-HST星系为单位进行建模。从这些星系的出版恒星种群属性开始,我们使用kernel密度估计值来构建多变量输入参数分配,从而构建kernel密度估计。我们创建了不同程度的复杂度(通过参数数量)的模拟频谱集,并使用嵌套的Sampling Algorithm MultinEest使用thagpipes codebase来得出成对嵌套模型的SED拟合结果和证据。然后,我们提出一个问题:这是真的吗?正如贝叶斯模型比较框架所预期的那样,正确的模型具有更大的证据?} 我们的结果表明,在绝大多数情况下,证据(贝叶斯因子)的比率(贝叶斯因子)能够识别正确的基础模型。结果的质量主要根据SED中总S/N的函数提高。我们还比较了使用证据获得的贝叶斯因子与通过野蛮二键密度比(SDDR)获得的贝叶斯因子,这是一种可以使用常规马尔可夫链蒙特卡洛方法的样品来计算的分析近似。我们表明,只要采样密度就足够,SDDR比率可以令人满意地替代完整的证据计算。
Bayesian model comparison frameworks can be used when fitting models to data in order to infer the appropriate model complexity in a data-driven manner. We aim to use them to detect the correct number of major episodes of star formation from the analysis of the spectral energy distributions (SEDs) of galaxies, modeled after 3D-HST galaxies at z ~ 1. Starting from the published stellar population properties of these galaxies, we use kernel density estimates to build multivariate input parameter distributions to obtain realistic simulations. We create simulated sets of spectra of varying degrees of complexity (identified by the number of parameters), and derive SED fitting results and evidences for pairs of nested models, including the correct model as well as more simplistic ones, using the BAGPIPES codebase with nested sampling algorithm MultiNest. We then ask the question: is it true - as expected in Bayesian model comparison frameworks - that the correct model has larger evidence?} Our results indicate that the ratio of evidences (the Bayes factor) is able to identify the correct underlying model in the vast majority of cases. The quality of the results improves primarily as a function of the total S/N in the SED. We also compare the Bayes factors obtained using the evidence to those obtained via the Savage-Dickey Density Ratio (SDDR), an analytic approximation which can be calculated using samples from regular Markov Chain Monte Carlo methods. We show that the SDDR ratio can satisfactorily replace a full evidence calculation provided that the sampling density is sufficient.