论文标题

在飞机上轻的欧几里得施罐

Light Euclidean Steiner Spanners in the Plane

论文作者

Bhore, Sujoy, Tóth, Csaba D.

论文摘要

轻度是欧几里得跨越的基本参数;它是扳手的重量与$ \ mathbb {r}^d $中有限点的最小跨度树的重量。在最近的突破中,Le and Solomon(2019)确立了$ \ varepsilon> 0 $和$ d \ in \ mathbb {n} $的精确依赖性,最低$(1+ \ varepsilon)$的$(1+ \ varepsilon)$ - 跨度,并观察到附加的stoiner点可以大大提高光线。 Le and Solomon (2020) constructed Steiner $(1+\varepsilon)$-spanners of lightness $O(\varepsilon^{-1}\logΔ)$ in the plane, where $Δ\geq Ω(\sqrt{n})$ is the \emph{spread} of the point set, defined as the ratio between the maximum and minimum distance between a pair of点。他们还构建了轻度$ \ tilde {o}(\ varepsilon^{ - (d+1)/2})$ n dimensions $ d \ geq 3 $。最近,Bhore andTóth(2020)建立了$ω(\ varepsilon^{ - d/2})$的下限,用于Steiner $(1+ \ varepsilon)$ - $ \ Mathbb {r}^d $的轻度(1+ \ varepsilon)$ - 用于$ d \ ge ge 2 $。该区域中的中心开放问题是在所有维度上缩小上下边界之间的差距$ d \ geq 2 $。 在这项工作中,我们表明,对于飞机中的每一组有限的积分,每一个$ \ varepsilon> 0 $,都存在着欧几里得施泰纳$(1+ \ varepsilon)$ - 轻度$ o(\ varepsilon^{ - 1})$ spanner这与$ d = 2 $的下限匹配。我们概括了可能具有独立感兴趣的浅灯树的概念,并使用定向跨度和修改后的窗户划分方案来实现严格的重量分析。

Lightness is a fundamental parameter for Euclidean spanners; it is the ratio of the spanner weight to the weight of the minimum spanning tree of a finite set of points in $\mathbb{R}^d$. In a recent breakthrough, Le and Solomon (2019) established the precise dependencies on $\varepsilon>0$ and $d\in \mathbb{N}$ of the minimum lightness of $(1+\varepsilon)$-spanners, and observed that additional Steiner points can substantially improve the lightness. Le and Solomon (2020) constructed Steiner $(1+\varepsilon)$-spanners of lightness $O(\varepsilon^{-1}\logΔ)$ in the plane, where $Δ\geq Ω(\sqrt{n})$ is the \emph{spread} of the point set, defined as the ratio between the maximum and minimum distance between a pair of points. They also constructed spanners of lightness $\tilde{O}(\varepsilon^{-(d+1)/2})$ in dimensions $d\geq 3$. Recently, Bhore and Tóth (2020) established a lower bound of $Ω(\varepsilon^{-d/2})$ for the lightness of Steiner $(1+\varepsilon)$-spanners in $\mathbb{R}^d$, for $d\ge 2$. The central open problem in this area is to close the gap between the lower and upper bounds in all dimensions $d\geq 2$. In this work, we show that for every finite set of points in the plane and every $\varepsilon>0$, there exists a Euclidean Steiner $(1+\varepsilon)$-spanner of lightness $O(\varepsilon^{-1})$; this matches the lower bound for $d=2$. We generalize the notion of shallow light trees, which may be of independent interest, and use directional spanners and a modified window partitioning scheme to achieve a tight weight analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源