论文标题
用Bispectrum II约束$M_ν$:Galaxy Biseptrum的总信息内容
Constraining $M_ν$ with the Bispectrum II: The Total Information Content of the Galaxy Bispectrum
论文作者
论文摘要
大量中微子抑制了小尺度上的结构的增长,并在大规模结构上留下烙印,可以测量以限制其总质量,$m_ν$。通过对两点聚类统计数据的标准分析,$M_ν$约束受到参数归化性的严重限制。 Hahn等人(2020年)证明了下一个高阶统计量的双光谱可以打破这些变性,并大大改善对$M_ν$和其他宇宙学参数的约束。在本文中,我们介绍了红移空间银河双光谱的约束功率,$ b_0^g $。我们使用Halo职业分布(HOD)模型构建了来自Quijote $ n $体型模拟的75,000个模拟星系目录的Molino Suite,该模型提供了一个非常适合基于模拟方法的星系偏置框架。使用这些模拟,我们为$ \ {ω_m,ω_b,h,n_s,σ_8,m_ν\} $提出了Fisher矩阵预测,并首次量化了$ b_0^g $的总信息内容$ b_0^g $。对于$ k _ {\ rm max} = 0.5h/mpc $,$ b_0^g $改善了$ω_m,ω_b,h,h,n_s,σ_8$和$m_ν$和2.8、3.1、3.1、3.8、4.2、4.2、4.2、4.2、4.2、4.6 \ $ 4.6 \ $ 4.6 \ times $ ipper offerepparimize y之后的约束。即使使用$ planck $的先验,$ b_0^g $也会将所有宇宙学约束提高到$ \ gtrsim2 \ times $。实际上,对于$ p_ \ ell^g $和$ b_0^g $ out to $ k _ {\ rm max} = 0.5h/mpc $,带有$ planck $ priors,我们实现了$1σ$ $m_ν$约束的0.048 ev,这比当前的最佳宇宙学约束更紧密。尽管诸如调查几何形状和组装偏差等效果会产生影响,但这些约束是以$(1H^{ - 1} {\ rm GPC})^3 $而得出的,比即将进行的调查小得多。因此,我们得出的结论是,银河系双光谱将显着改善即将进行的Galaxy调查的宇宙学限制,尤其是对于$M_ν$。
Massive neutrinos suppress the growth of structure on small scales and leave an imprint on large-scale structure that can be measured to constrain their total mass, $M_ν$. With standard analyses of two-point clustering statistics, $M_ν$ constraints are severely limited by parameter degeneracies. Hahn et al.(2020) demonstrated that the bispectrum, the next higher-order statistic, can break these degeneracies and dramatically improve constraints on $M_ν$ and other cosmological parameters. In this paper, we present the constraining power of the redshift-space galaxy bispectrum, $B_0^g$. We construct the Molino suite of 75,000 mock galaxy catalogs from the Quijote $N$-body simulations using the halo occupation distribution (HOD) model, which provides a galaxy bias framework well-suited for simulation-based approaches. Using these mocks, we present Fisher matrix forecasts for $\{Ω_m,Ω_b,h,n_s,σ_8, M_ν\}$ and quantify, for the first time, the total information content of $B_0^g$ down to nonlinear scales. For $k_{\rm max}=0.5h/Mpc$, $B_0^g$ improves constraints on $Ω_m,Ω_b,h,n_s,σ_8$, and $M_ν$ by 2.8, 3.1, 3.8, 4.2, 4.2, and $4.6\times$ over the power spectrum, after marginalizing over HOD parameters. Even with priors from $Planck$, $B_0^g$ improves all of the cosmological constraints by $\gtrsim2\times$. In fact, for $P_\ell^g$ and $B_0^g$ out to $k_{\rm max}=0.5h/Mpc$ with $Planck$ priors, we achieve a $1σ$ $M_ν$ constraint of 0.048 eV, which is tighter than the current best cosmological constraint. While effects such as survey geometry and assembly bias will have an impact, these constraints are derived for $(1h^{-1}{\rm Gpc})^3$, a substantially smaller volume than upcoming surveys. Therefore, we conclude that the galaxy bispectrum will significantly improve cosmological constraints for upcoming galaxy surveys -- especially for $M_ν$.