论文标题

具有深神网络的光学量子状态的分类和重建

Classification and reconstruction of optical quantum states with deep neural networks

论文作者

Ahmed, Shahnawaz, Muñoz, Carlos Sánchez, Nori, Franco, Kockum, Anton Frisk

论文摘要

我们将基于深神经网络的技术应用于量子状态分类和重建。我们证明了高分类精度和重建保真度,即使存在噪声和很少的数据。我们首先以光量子状态为示例,首先证明卷积神经网络(CNN)如何成功地分类了几种类型的状态,例如加性高斯噪声或光子损失。我们进一步表明,接受嘈杂输入的CNN可以学会识别数据中最重要的区域,该区域可能通过指导自适应数据收集来降低层析成本。其次,我们使用包含量子物理学知识的神经网络来证明量子状态密度矩阵的重建。知识被实现为自定义神经网络层,可将输出从标准的前馈神经网络转换为量子状态的有效描述。使用我们的方法,可以将任何标准的前馈神经网络结构架构用于量子状态断层扫描(QST)。我们提出了我们提出的[ARXIV:2008.03240] QST技术的进一步演示,该技术具有条件生成的对抗网络(QST-CGAN)。我们通过证明QST-CGAN在各种场景,通过标准损失功能训练的生成网络上优于QST-CAN的表现来激励我们选择在对抗框架内的可学习损失功能。对于具有加性或卷积高斯噪声的纯状态,QST-CGAN能够适应噪声并重建基本状态。与标准迭代最大似然(IMLE)方法相比,QST-CGAN重建最多要少的迭代步骤要少两个数量级。此外,QST-cgan可以比IMLE的随机选择数据点的两个数量级的纯状态和混合状态重建。

We apply deep-neural-network-based techniques to quantum state classification and reconstruction. We demonstrate high classification accuracies and reconstruction fidelities, even in the presence of noise and with little data. Using optical quantum states as examples, we first demonstrate how convolutional neural networks (CNNs) can successfully classify several types of states distorted by, e.g., additive Gaussian noise or photon loss. We further show that a CNN trained on noisy inputs can learn to identify the most important regions in the data, which potentially can reduce the cost of tomography by guiding adaptive data collection. Secondly, we demonstrate reconstruction of quantum-state density matrices using neural networks that incorporate quantum-physics knowledge. The knowledge is implemented as custom neural-network layers that convert outputs from standard feedforward neural networks to valid descriptions of quantum states. Any standard feed-forward neural-network architecture can be adapted for quantum state tomography (QST) with our method. We present further demonstrations of our proposed [arXiv:2008.03240] QST technique with conditional generative adversarial networks (QST-CGAN). We motivate our choice of a learnable loss function within an adversarial framework by demonstrating that the QST-CGAN outperforms, across a range of scenarios, generative networks trained with standard loss functions. For pure states with additive or convolutional Gaussian noise, the QST-CGAN is able to adapt to the noise and reconstruct the underlying state. The QST-CGAN reconstructs states using up to two orders of magnitude fewer iterative steps than a standard iterative maximum likelihood (iMLE) method. Further, the QST-CGAN can reconstruct both pure and mixed states from two orders of magnitude fewer randomly chosen data points than iMLE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源