论文标题
广义Yamabe梯度孤子和应用
Generalized Quasi Yamabe Gradient Solitons and Applications
论文作者
论文摘要
本文的目的是研究扭曲产品歧管上的广义yamabe梯度孤子。首先,我们获得了一些具有扭曲产品结构的广义Yamabe梯度孤子的必要条件。然后,我们研究了洛伦兹(Lorentzian)和特定类别的中性环境中的三个重要应用,称为梯度Yamabe Soliton:我们证明了在广义的Robertson-Walker spacetimes上存在非平凡的梯度Yamabe Soliton,标准的静态显期和Walker词段。
The purpose of this article is to study generalized quasi Yamabe gradient solitons on warped product manifolds. First, we obtain some necessary and sufficient conditions for the existence of generalized quasi Yamabe gradient solitons equipped with the warped product structure. Then we study three important applications in the Lorentzian and the neutral settings for the particular class, called as gradient Yamabe soliton: We proved the existence of the non-trivial gradient Yamabe soliton on generalized Robertson-Walker spacetimes, standard static spacetimes and Walker manifolds.