论文标题

奇异Kähler-Einstein电位的连续性

Continuity of singular Kähler-Einstein potentials

论文作者

Guedj, Vincent, Guenancia, Henri, Zeriahi, Ahmed

论文摘要

在本说明中,我们研究了奇异空间上退化复合复合蒙格 - 安培方程(DCMAE)解决方案的一些规律性方面。首先,我们研究了在单数Stein空间上DCMAE的DIRICHLET问题,显示了一般的连续性结果。结果的结果是,在孤立的奇异点处,Kähler-Einstein电位是连续的。接下来,当参考类别属于真正的néron-severi群体时,我们建立了DCMAE解决方案的全球连续性。这尤其产生了Kähler-Einstein电位在任何不可还原的Calabi-yau品种上的连续性。

In this note, we investigate some regularity aspects for solutions of degenerate complex Monge-Ampère equations (DCMAE) on singular spaces. First, we study the Dirichlet problem for DCMAE on singular Stein spaces, showing a general continuity result. A consequence of our results is that Kähler-Einstein potentials are continuous at isolated singularities. Next, we establish the global continuity of solutions to DCMAE when the reference class belongs to the real Néron-Severi group. This yields in particular the continuity of Kähler-Einstein potentials on any irreducible Calabi-Yau variety.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源