论文标题

相关模糊神经网络的无反向传播学习方法

Backpropagation-Free Learning Method for Correlated Fuzzy Neural Networks

论文作者

Salimi-Badr, Armin, Ebadzadeh, Mohammad Mehdi

论文摘要

在本文中,提出了一种基于估计所需零件的输出的新颖逐步学习方法,提出了一个约束优化问题。这种学习方法不需要反向传播输出错误来学习前提部分的参数。取而代之的是,估算了规则前提部分的接近最佳输出值,并更改其参数,以减少当前前提部件的输出与估计所需的所需零件之间的误差。因此,所提出的学习方法避免了错误反向传播,这导致梯度消失,因此被卡在局部最佳中。提出的方法不需要任何初始化方法。这种学习方法用于培训新的高典曲霉(TSK)模糊神经网络具有相关模糊规则的模糊神经网络,包括前提和随后的零件中的许多参数,避免由于消失的梯度而被卡在本地最佳中。为了了解所提出的网络参数,首先,引入并解决了一个约束的优化问题,以估算前提部分输出值的所需值。接下来,这些值与当前值之间的误差用于基于梯度 - 淡季(GD)方法调整前提部分的参数。之后,使用GD方法来学习所需的和网络输出之间的误差。所提出的范式成功地应用于现实世界中的预测和回归问题。根据实验结果,其性能的表现优于其他方法,其结构更为简单。

In this paper, a novel stepwise learning approach based on estimating desired premise parts' outputs by solving a constrained optimization problem is proposed. This learning approach does not require backpropagating the output error to learn the premise parts' parameters. Instead, the near best output values of the rules premise parts are estimated and their parameters are changed to reduce the error between current premise parts' outputs and the estimated desired ones. Therefore, the proposed learning method avoids error backpropagation, which lead to vanishing gradient and consequently getting stuck in a local optimum. The proposed method does not need any initialization method. This learning method is utilized to train a new Takagi-Sugeno-Kang (TSK) Fuzzy Neural Network with correlated fuzzy rules including many parameters in both premise and consequent parts, avoiding getting stuck in a local optimum due to vanishing gradient. To learn the proposed network parameters, first, a constrained optimization problem is introduced and solved to estimate the desired values of premise parts' output values. Next, the error between these values and the current ones is utilized to adapt the premise parts' parameters based on the gradient-descent (GD) approach. Afterward, the error between the desired and network's outputs is used to learn consequent parts' parameters by the GD method. The proposed paradigm is successfully applied to real-world time-series prediction and regression problems. According to experimental results, its performance outperforms other methods with a more parsimonious structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源