论文标题

来源了解下一个目的地建议,并具有个性化的偏好关注

Origin-Aware Next Destination Recommendation with Personalized Preference Attention

论文作者

Lim, Nicholas, Hooi, Bryan, Ng, See-Kiong, Wang, Xueou, Goh, Yong Liang, Weng, Renrong, Tan, Rui

论文摘要

下一个目的地建议是出租车和乘车服务运输领域中的一项重要任务,鉴于其当前的起源位置,建议使用个性化目的地的用户。但是,最近的建议作品不能满足这种起源意识属性,而仅考虑在没有原点信息的情况下从历史目的地学习。因此,最终的方法无法根据用户的当前位置学习和预测来源感知的建议,从而导致次优的性能和不良的现实世界实用性。因此,在这项工作中,我们研究了起源的下一个目的地推荐任务。我们提出了空间 - 周期起源的个性化偏好关注(STOD-PPA)编码器模型,以学习来源 - 原孔(OO),目的地用途(DD)和原点 - 终止(OD)关系,首先通过对本地和全球视图中的空间和全球视图中的空间和时间因素进行编码,从而通过将其定义为偏爱,从而通过将原点和时间序列编码来编码来源,从而预先偏爱。七个实际用户轨迹出租车数据集的实验结果表明,我们的模型大大优于基线和最先进的方法。

Next destination recommendation is an important task in the transportation domain of taxi and ride-hailing services, where users are recommended with personalized destinations given their current origin location. However, recent recommendation works do not satisfy this origin-awareness property, and only consider learning from historical destination locations, without origin information. Thus, the resulting approaches are unable to learn and predict origin-aware recommendations based on the user's current location, leading to sub-optimal performance and poor real-world practicality. Hence, in this work, we study the origin-aware next destination recommendation task. We propose the Spatial-Temporal Origin-Destination Personalized Preference Attention (STOD-PPA) encoder-decoder model to learn origin-origin (OO), destination-destination (DD), and origin-destination (OD) relationships by first encoding both origin and destination sequences with spatial and temporal factors in local and global views, then decoding them through personalized preference attention to predict the next destination. Experimental results on seven real-world user trajectory taxi datasets show that our model significantly outperforms baseline and state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源