论文标题
具有分数环境和动态的慢速系统
Slow-Fast Systems with Fractional Environment and Dynamics
论文作者
论文摘要
我们证明了用于相互作用慢速系统的分数平均原理。收敛方式在Hölder规范中的概率中。主要的技术结果是在条件分数动力学上的淬灭颈定理。我们还为一类分数驱动的随机微分方程建立了几何形状,改善了Panloup和Richard的最新结果。
We prove a fractional averaging principle for interacting slow-fast systems. The mode of convergence is in Hölder norm in probability. The main technical result is a quenched ergodic theorem on the conditioned fractional dynamics. We also establish geometric ergodicity for a class of fractional-driven stochastic differential equations, improving a recent result of Panloup and Richard.