论文标题

具有分数环境和动态的慢速系统

Slow-Fast Systems with Fractional Environment and Dynamics

论文作者

Li, Xue-Mei, Sieber, Julian

论文摘要

我们证明了用于相互作用慢速系统的分数平均原理。收敛方式在Hölder规范中的概率中。主要的技术结果是在条件分数动力学上的淬灭颈定理。我们还为一类分数驱动的随机微分方程建立了几何形状,改善了Panloup和Richard的最新结果。

We prove a fractional averaging principle for interacting slow-fast systems. The mode of convergence is in Hölder norm in probability. The main technical result is a quenched ergodic theorem on the conditioned fractional dynamics. We also establish geometric ergodicity for a class of fractional-driven stochastic differential equations, improving a recent result of Panloup and Richard.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源