论文标题
量子计量学具有两个不同编码通道的连贯叠加
Quantum Metrology with Coherent Superposition of Two Different Coded Channels
论文作者
论文摘要
我们研究了两个不同编码通道在量子计量学中相干叠加的优势。在连续的变量系统中,我们表明,在没有不确定的因果秩序的情况下,连贯的叠加可以击败海森堡限制$ 1/n $。在参数估计中,我们证明了具有相干叠加的策略可以比用量子\ textsc {switch}策略表现更好,该策略可以生成无限期的因果秩序。我们从分析地从量子Fisher信息方面分析获得估计精度的一般形式,并进一步证明非线性汉密尔顿人可以提高估计精度,并使$ M \ geq2 $的测量不确定性量表为$ 1/n^m $。我们的结果可以帮助构建高精度测量设备,该设备可用于检测耦合强度和时间扩张的测试以及规范换向关系的修改。
We investigate the advantage of coherent superposition of two different coded channels in quantum metrology. In a continuous variable system, we show that the Heisenberg limit $1/N$ can be beaten by the coherent superposition without the help of indefinite causal order. And in parameter estimation, we demonstrate that the strategy with the coherent superposition can perform better than the strategy with quantum \textsc{switch} which can generate indefinite causal order. We analytically obtain the general form of estimation precision in terms of the quantum Fisher information and further prove that the nonlinear Hamiltonian can improve the estimation precision and make the measurement uncertainty scale as $1/N^m$ for $m\geq2$. Our results can help to construct a high-precision measurement equipment, which can be applied to the detection of coupling strength and the test of time dilation and the modification of the canonical commutation relation.