论文标题
使用触觉和本体感受反馈的目标驱动机器人推动
Goal-Driven Robotic Pushing Using Tactile and Proprioceptive Feedback
论文作者
论文摘要
在机器人中,非骚扰操作(例如推动)是移动大,重或笨拙的物体,一次移动多个对象或减少对象或姿势对象的不确定性的有用方法。在这项研究中,我们提出了一种用于机器人推动的反应性和自适应方法,该方法使用高分辨率光触觉传感器的丰富反馈来控制推动运动,而不是依靠推动相互作用的分析或数据驱动的模型。具体来说,我们使用目标驱动的触觉探索来积极寻找稳定的推动配置,从而导致对象保持其相对于推动器的姿势,同时将推动器和对象逐渐移动到目标。我们通过在平面和弯曲表面上推动对象来评估我们的方法。对于平面表面,我们表明该方法对于初始接触位置/角度,对象形状和启动位置的变化是准确且鲁棒的;对于弯曲表面,性能会稍微降解。我们工作的直接结果是,它表明,明确的推动互动模型可能足够,但对于此类任务不是必需的。它还提出了一个有趣的问题,即应该对系统的哪些方面进行建模,以实现各种场景的最佳性能和概括。最后,它突出了在开发用于机器人推动的新方法时在非平面表面和其他更复杂环境中进行测试的重要性。
In robots, nonprehensile manipulation operations such as pushing are a useful way of moving large, heavy or unwieldy objects, moving multiple objects at once, or reducing uncertainty in the location or pose of objects. In this study, we propose a reactive and adaptive method for robotic pushing that uses rich feedback from a high-resolution optical tactile sensor to control push movements instead of relying on analytical or data-driven models of push interactions. Specifically, we use goal-driven tactile exploration to actively search for stable pushing configurations that cause the object to maintain its pose relative to the pusher while incrementally moving the pusher and object towards the target. We evaluate our method by pushing objects across planar and curved surfaces. For planar surfaces, we show that the method is accurate and robust to variations in initial contact position/angle, object shape and start position; for curved surfaces, the performance is degraded slightly. An immediate consequence of our work is that it shows that explicit models of push interactions might be sufficient but are not necessary for this type of task. It also raises the interesting question of which aspects of the system should be modelled to achieve the best performance and generalization across a wide range of scenarios. Finally, it highlights the importance of testing on non-planar surfaces and in other more complex environments when developing new methods for robotic pushing.