论文标题

活性域适应的随机对抗梯度嵌入

Stochastic Adversarial Gradient Embedding for Active Domain Adaptation

论文作者

Bouvier, Victor, Very, Philippe, Chastagnol, Clément, Tami, Myriam, Hudelot, Céline

论文摘要

无监督的域适应性(UDA)旨在弥合源域之间的差距,该源域可用,其中有标记的数据可用,而目标域仅用未标记的数据表示。如果域不变表示大大提高了模型的适应性,以确保其良好的可传递性仍然是一个具有挑战性的问题。本文通过使用主动学习来注释少量的目标数据来解决此问题。尽管这种称为Active域适应(ADA)的设置与UDA的标准设置偏离,但这种情况都面临着广泛的实际应用。为此,我们介绍\ textit {随机对抗梯度嵌入}(Sage),该框架对ADA产生三重贡献。首先,我们选择注释目标样本,这些样本可能通过测量转移性损失梯度的变化,在注释前后,可以改善表示形式的转移性。其次,我们通过促进不同的梯度方向来增加采样多样性。第三,我们引入了一种新颖的培训程序,用于在学习不变表示时积极合并目标样本。 SAGE基于固体理论基础,并在针对多个基线的各种UDA基准上进行了验证。我们的实证研究表明,Sage采取了最佳的不确定性\ textit {vs}多样性采样,并基本上提高了表示性的可转移性。

Unsupervised Domain Adaptation (UDA) aims to bridge the gap between a source domain, where labelled data are available, and a target domain only represented with unlabelled data. If domain invariant representations have dramatically improved the adaptability of models, to guarantee their good transferability remains a challenging problem. This paper addresses this problem by using active learning to annotate a small budget of target data. Although this setup, called Active Domain Adaptation (ADA), deviates from UDA's standard setup, a wide range of practical applications are faced with this situation. To this purpose, we introduce \textit{Stochastic Adversarial Gradient Embedding} (SAGE), a framework that makes a triple contribution to ADA. First, we select for annotation target samples that are likely to improve the representations' transferability by measuring the variation, before and after annotation, of the transferability loss gradient. Second, we increase sampling diversity by promoting different gradient directions. Third, we introduce a novel training procedure for actively incorporating target samples when learning invariant representations. SAGE is based on solid theoretical ground and validated on various UDA benchmarks against several baselines. Our empirical investigation demonstrates that SAGE takes the best of uncertainty \textit{vs} diversity samplings and improves representations transferability substantially.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源