论文标题

在CR单数CR图像上

On CR singular CR images

论文作者

Lebl, Jiří, Noell, Alan, Ravisankar, Sivaguru

论文摘要

我们说,如果$ m $的Cr点在$ m $上作为抽象的Cr结构扩展为$ m $的CR点,则Cr Singular Sugnull suidmanifold $ m $具有可移动的Cr奇异性。我们研究了这种真实分析的子曼菲尔德,在这种情况下,可移动性等于$ m $,这是全体形态地图下通用的真实分析的子手机$ n $的图像,这是$ n $ n $ n $ to $ m $的图像,我们称之为cr图像。我们研究了Cr奇异性在扰动,相关的二次不变的稳定性以及可移除Cr奇异性的条件。还证明了引理涉及在CR子曼群上的全体形态功能的零,这可能具有独立的关注。

We say that a CR singular submanifold $M$ has a removable CR singularity if the CR structure at the CR points of $M$ extends through the singularity as an abstract CR structure on $M$. We study such real-analytic submanifolds, in which case removability is equivalent to $M$ being the image of a generic real-analytic submanifold $N$ under a holomorphic map that is a diffeomorphism of $N$ onto $M$, what we call a CR image. We study the stability of the CR singularity under perturbation, the associated quadratic invariants, and conditions for removability of a CR singularity. A lemma is also proved about perturbing away the zeros of holomorphic functions on CR submanifolds, which could be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源