论文标题
关于细丝碎裂和环境环境对其的影响
On filament fragmentation and the impact of ambient environment on it
论文作者
论文摘要
细丝是恒星形成过程中至关重要的中介。对细丝的最新观察结果表明,其中许多是非单独的实体,而\ textbf {(ii)},而大多数丝质核心比其natal丝质纤维相比,一些齿轮是宽阔的,而一些齿状纤维是宽阔的。我们通过开发最初的亚临界个体细丝的流体动力学模拟来探索这些问题,该模拟被允许从其附近吸收气体并在自治下发展。此处获得的结果支持这样的想法,即在细丝形成过程中自然形成纤维。我们进一步认为,环境环境,即外部压力的幅度,而不是单独的细丝纤维素,它与其进化的形态有关。我们观察到,无论外部压力如何,细丝都容易受到\ emph {sausage} - 型不稳定性的影响。但是,这些碎片在丝状上被捏住,经历与太阳能社区相当的压力($ \ sim 10^{4} $ k cm $^{ - 3} $)。相比之下,碎片宽阔且球形 - 具有与稳定的邦纳(Ebert Sphere)相似的密度曲线 - 当细丝经历较高的压力时,通常$ \ ge 10^{5} $ k cm $^{ - 3} $,但$ \ le 10^{6} $ k cm $ $ $^cm $^{ - 3} $)。细丝倾向于在更高的外部压力下破裂($ \ ge 10^{7} $ k cm $^{ - 3} $)。这些观察结果共同表示随着外部压力的增加,恒星的形成效率较低。
Filaments are crucial intermediaries in the star formation process. Recent observations of filaments show that - \textbf{(i)} a number of them are non-singular entities, and rather a bundle of velocity coherent fibres, and \textbf{(ii)} while a majority of filaments spawn cores narrower than their natal filaments, some cores are broader. We explore these issues by developing hydrodynamic simulations of an initially sub-critical individual filament that is allowed to accrete gas from its neighbourhood and evolves under self-gravity. Results obtained here support the idea that fibres form naturally during the filament formation process. We further argue that the ambient environment, i.e., the magnitude of external pressure, and not the filament linemass alone, has bearing upon the morphology of its evolution. We observe that a filament is susceptible to the \emph{sausage}-type instability irrespective of the external pressure. The fragments, however, are pinched in a filament experiencing pressure comparable to that in the Solar neighbourhood ($\sim 10^{4}$ K cm$^{-3}$). By contrast, fragments are broad and spherical - having density profiles similar to that of a stable Bonnor - Ebert sphere - when the filament experiences a higher pressure, typically $\ge 10^{5}$ K cm$^{-3}$, but $\le 10^{6}$ K cm$^{-3}$). The filament tends to rupture at even higher external pressure ($\ge 10^{7}$ K cm$^{-3}$). These observations collectively mean that star formation is less efficient with increasing external pressure.