论文标题

实时投标的固定点标签归因

Fixed point label attribution for real-time bidding

论文作者

Bompaire, Martin, Désir, Antoine, Heymann, Benjamin

论文摘要

问题定义:大多数显示广告清单都是通过实时拍卖出售的。这些拍卖的参与者通常是代表广告商参加的竞标者(例如Google,Criteo,RTB House,Trade Desk)。为了估计每个显示机会的价值,他们通常使用历史数据来训练高级机器学习算法。在标记的训练集中,输入是代表每个显示机会的功能的向量,标签是生成的奖励。实际上,奖励由广告商给出,并与特定用户是否转换有关。因此,奖励在用户级别汇总,并且从未在显示级别观察到。据我们所知,一项根本的任务是忽略了这一不匹配,分裂或属性的不匹配,或属性,在培训学习算法之前,在正确的粒度级别上的奖励。我们将其称为标签归因问题。 方法论/结果:在本文中,我们为标签归因问题开发了一种方法,这既是理论上的合理又实用。特别是,我们开发了一种固定点算法,该算法允许大规模实施,并使用大型侧面平台Criteo的大规模公开数据集展示我们的解决方案。我们将固定点标签归因(FIPLA)算法的方法配音。 管理含义:将广告商的信号转换为显示标签时,通常会有一个隐藏的信仰飞跃。 DSP提供商在构建机器学习管道时应小心并仔细解决标签归因步骤。

Problem definition: Most of the display advertising inventory is sold through real-time auctions. The participants of these auctions are typically bidders (Google, Criteo, RTB House, Trade Desk for instance) who participate on behalf of advertisers. In order to estimate the value of each display opportunity, they usually train advanced machine learning algorithms using historical data. In the labeled training set, the inputs are vectors of features representing each display opportunity and the labels are the generated rewards. In practice, the rewards are given by the advertiser and are tied to whether or not a particular user converts. Consequently, the rewards are aggregated at the user level and never observed at the display level. A fundamental task that has, to the best of our knowledge, been overlooked is to account for this mismatch and split, or attribute, the rewards at the right granularity level before training a learning algorithm. We call this the label attribution problem. Methodology/results: In this paper, we develop an approach to the label attribution problem, which is both theoretically justified and practical. In particular, we develop a fixed point algorithm that allows for large scale implementation and showcase our solution using a large scale publicly available dataset from Criteo, a large Demand Side Platform. We dub our approach the Fixed Point Label Attribution (FiPLA) Algorithm. Managerial implications: There is often a hidden leap of faith when transforming the advertiser's signal into display labelling. DSP providers should be careful when building their machine learning pipeline and carefully solve the label attribution step.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源