论文标题

随机探测下量子状态的第一个检测时间

The first detection time of a quantum state under random probing

论文作者

Kessler, David A., Barkai, Eli, Ziegler, Klaus

论文摘要

当系统处于独立分布的随机时间间隔时,我们解决了特定所需状态下量子系统的首次检测的统计数据。我们提出了$ n $ th尝试中检测可能性的公式。我们还计算了第一次成功检测尝试的数量和第一次检测的时间的平均值和平均平方。在检测间隔呈指数分配的情况下,我们为最初在一个大小$ l $的环上的粒子提供了明确的结果。我们证明,对于所有间隔分布和有限维汉密尔顿人,平均检测时间等于平均尝试数倍尝试之间的平均时间间隔。我们进一步证明,对于返回问题时,当初始和目标状态相同时,总检测概率是统一性,而直到检测的平均尝试是整数,即希尔伯特空间的大小(对目标状态对称)。我们研究固定时间间隔情况与通过伽马分布的指数分布之间的插值,并以恒定的均值和变化的宽度为单位。当我们调整从非常狭窄(峰值的峰值)到指数的时间间隔时,平均时间间隔的函数的平均到达时间质量变化,因为通过采样的随机性消除了共振。

We solve for the statistics of the first detection of a quantum system in a particular desired state, when the system is subject to a projective measurement at independent identically distributed random time intervals. We present formulas for the probability of detection in the $n$th attempt. We calculate as well the mean and mean square both of the number of the first successful detection attempt and the time till first detection. We present explicit results for a particle initially localized at a site on a ring of size $L$, probed at some arbitrary given site, in the case when the detection intervals are distributed exponentially. We prove that, for all interval distributions and finite-dimensional Hamiltonians, the mean detection time is equal to the mean attempt number times the mean time interval between attempts. We further prove that for the return problem when the initial and target state are identical, the total detection probability is unity and the mean attempts till detection is an integer, which is the size of the Hilbert space (symmetrized about the target state). We study an interpolation between the fixed time interval case to an exponential distribution of time intervals via the Gamma distribution with constant mean and varying width. The mean arrival time as a function of the mean interval changes qualitatively as we tune the inter-arrival time distribution from very narrow (delta peaked) to exponential, as resonances are wiped out by the randomness of the sampling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源