论文标题
无监督的交替优化,用于盲目的高光谱图像超分辨率
Unsupervised Alternating Optimization for Blind Hyperspectral Imagery Super-resolution
论文作者
论文摘要
尽管深度模型对高光谱图像(HSI)超分辨率(SR)的成功取得了巨大成功,但应用于真实数据时,其中大多数功能不令人满意,尤其是对于无监督的HSI SR方法。主要原因之一来自以下事实:大多数HSI SR方法使用的预定义的变性模型(例如,空间域中的模糊)通常与真实的变性模型存在很大的差异,从而导致这些深层模型过渡并最终降低其在真实数据上的性能。为了很好地缓解这样的问题,我们探索了无监督的盲人HSI SR方法。具体而言,我们研究了如何在空间和光谱域中有效地获得变性模型,并使其与基于融合的SR重建模型兼容。为此,我们首先提出了一个基于优化的深层框架,以估计退化模型并重建潜在图像,而堕落模型估计和HSI重建可以相互促进。然后,进一步提出了基于元学习的机制来预先培训网络,该机制可以有效地改善适应不同复杂变性的速度和概括能力。三个基准HSI SR数据集的实验报告了所提出的方法在处理盲HSI融合问题上的优势与其他竞争方法相比。
Despite the great success of deep model on Hyperspectral imagery (HSI) super-resolution(SR) for simulated data, most of them function unsatisfactory when applied to the real data, especially for unsupervised HSI SR methods. One of the main reason comes from the fact that the predefined degeneration models (e.g. blur in spatial domain) utilized by most HSI SR methods often exist great discrepancy with the real one, which results in these deep models overfit and ultimately degrade their performance on real data. To well mitigate such a problem, we explore the unsupervised blind HSI SR method. Specifically, we investigate how to effectively obtain the degeneration models in spatial and spectral domain, respectively, and makes them can well compatible with the fusion based SR reconstruction model. To this end, we first propose an alternating optimization based deep framework to estimate the degeneration models and reconstruct the latent image, with which the degeneration models estimation and HSI reconstruction can mutually promotes each other. Then, a meta-learning based mechanism is further proposed to pre-train the network, which can effectively improve the speed and generalization ability adapting to different complex degeneration. Experiments on three benchmark HSI SR datasets report an excellent superiority of the proposed method on handling blind HSI fusion problem over other competing methods.