论文标题
Fairbatch:模型公平的批次选择
FairBatch: Batch Selection for Model Fairness
论文作者
论文摘要
培训公平的机器学习模型对于防止人口统计学差异至关重要。现有的改善模型公平的技术需要在数据预处理或模型培训中进行广泛的改变,这使自己难以实现可能已经复杂的机器学习系统。我们通过双重优化的镜头来解决此问题。在将标准培训算法作为内部优化器中,我们合并了外部优化器,以便为内部问题配备附加功能:自适应选择MiniBatch尺寸,以改善模型公平。我们称为FairBatch的批处理选择算法,实现了这种优化并支持明显的公平度量:机会均等,均衡的赔率和人群奇偶校验。 FairBatch具有重大的实施优势 - 它不需要对数据预处理或模型培训进行任何修改。例如,用于更换模型培训的批处理选择的单线更改足以使用FairBatch。我们对合成和基准测试的实验实验表明,FairBatch可以提供此类功能,同时实现与艺术状态的可比性(甚至更大)的性能。此外,FairBatch可以简单地通过微调来轻松提高任何预训练模型的公平性。它还与用于不同目的的现有批处理选择技术兼容,例如更快的收敛,因此可以优雅地实现多种目的。
Training a fair machine learning model is essential to prevent demographic disparity. Existing techniques for improving model fairness require broad changes in either data preprocessing or model training, rendering themselves difficult-to-adopt for potentially already complex machine learning systems. We address this problem via the lens of bilevel optimization. While keeping the standard training algorithm as an inner optimizer, we incorporate an outer optimizer so as to equip the inner problem with an additional functionality: Adaptively selecting minibatch sizes for the purpose of improving model fairness. Our batch selection algorithm, which we call FairBatch, implements this optimization and supports prominent fairness measures: equal opportunity, equalized odds, and demographic parity. FairBatch comes with a significant implementation benefit -- it does not require any modification to data preprocessing or model training. For instance, a single-line change of PyTorch code for replacing batch selection part of model training suffices to employ FairBatch. Our experiments conducted both on synthetic and benchmark real data demonstrate that FairBatch can provide such functionalities while achieving comparable (or even greater) performances against the state of the arts. Furthermore, FairBatch can readily improve fairness of any pre-trained model simply via fine-tuning. It is also compatible with existing batch selection techniques intended for different purposes, such as faster convergence, thus gracefully achieving multiple purposes.