论文标题
元生成深的专注度度量,以进行几次分类
Meta-Generating Deep Attentive Metric for Few-shot Classification
论文作者
论文摘要
学习生成一个任务感知的基础学习者证明了一个有前途的方向,可以解决一些少数学习问题(FSL)问题。现有方法主要集中于生成用固定度量(例如余弦距离)用于最近的邻居分类或直接生成线性分类器的嵌入模型。但是,由于这种简单的度量或分类器的歧视能力有限,这些方法无法适当地推广到具有挑战性的案例。为了减轻这个问题,我们提出了一种新颖的深度度量元生成方法,该方法转向正交方向,即学会根据任务描述适应为新的FSL任务生成特定的度量标准(例如,一些标记的样本)。在这项研究中,我们使用三层深切的网络构建度量,该指标足够灵活,可以为每个任务生成一个判别度度量。此外,与现有的方法不同,该方法利用了在网络生成的标记样品上的单模式重量分布,而拟议的元学习者建立了一个多模式的重量分布,该分布在跨级样品对上进行条件,使用量身定制的变异自动码编码器,可以单独捕获每个类别的跨越类别统计数据,用于每种类别和共同启动的特定级别差异,以供量身市构成各个类别的分类。通过这样做,可以通过令人愉悦的概括性能适当地适应新的FSL任务。为了证明这一点,我们在四个基准FSL数据集上测试了提出的方法,并在最先进的竞争对手方面获得了惊人的性能改善,尤其是在具有挑战性的情况下,例如,在26.14%中,从26.14%提高到46.69%到46.69%,在20 nowe 1-Shot the MiniimageNet上的20 nowe 1-Shot shot shot the Imiimagenet上的准确性提高了45.2%的精度为68.72%1.72%乘以5.72%的速度1.72%。可用代码:https://github.com/nwpuzhoufei/dam。
Learning to generate a task-aware base learner proves a promising direction to deal with few-shot learning (FSL) problem. Existing methods mainly focus on generating an embedding model utilized with a fixed metric (eg, cosine distance) for nearest neighbour classification or directly generating a linear classier. However, due to the limited discriminative capacity of such a simple metric or classifier, these methods fail to generalize to challenging cases appropriately. To mitigate this problem, we present a novel deep metric meta-generation method that turns to an orthogonal direction, ie, learning to adaptively generate a specific metric for a new FSL task based on the task description (eg, a few labelled samples). In this study, we structure the metric using a three-layer deep attentive network that is flexible enough to produce a discriminative metric for each task. Moreover, different from existing methods that utilize an uni-modal weight distribution conditioned on labelled samples for network generation, the proposed meta-learner establishes a multi-modal weight distribution conditioned on cross-class sample pairs using a tailored variational autoencoder, which can separately capture the specific inter-class discrepancy statistics for each class and jointly embed the statistics for all classes into metric generation. By doing this, the generated metric can be appropriately adapted to a new FSL task with pleasing generalization performance. To demonstrate this, we test the proposed method on four benchmark FSL datasets and gain surprisingly obvious performance improvement over state-of-the-art competitors, especially in the challenging cases, eg, improve the accuracy from 26.14% to 46.69% in the 20-way 1-shot task on miniImageNet, while improve the accuracy from 45.2% to 68.72% in the 5-way 1-shot task on FC100. Code is available: https://github.com/NWPUZhoufei/DAM.