论文标题
γ节律的悖论相响应有助于其夹带在异质网络中
Paradoxical phase response of gamma rhythms facilitates their entrainment in heterogeneous networks
论文作者
论文摘要
在不同大脑区域引起的不同$γ$ rhanmthm的同步与各种认知功能有关。在这里,我们专注于无处不在的神经元异质性对PING(Pyramidal-Internerronal网络伽马)和ING(神经元网络伽玛)节律的同步的影响。节奏的同步属性取决于其集体阶段对外部输入的响应。因此,我们使用表现出表现为PING或ING节奏的全部耦合网络(IF)神经元的全部耦合网络的数值模拟,确定了有限振幅扰动(FMPRC)的宏观相位响应曲线。我们表明,固有的神经元异质性可以定性地改变FMPRC。虽然个人if-神经元的相响应曲线严格为正(I型),但FMPRC可以是双相并显示出这两个符号(II型)。因此,对于ping节奏,对兴奋性细胞的外部激发实际上可以延迟网络的集体振荡,即使同样的兴奋将导致应用于未耦合的神经元时,会导致进步。当外部激发通过引起其他抑制性神经元的尖峰来改变网络的内部动力学时,就会产生这种矛盾的延迟,抑制性神经元的延迟延迟网络内部抑制作用超过了外部激发引起的直接进步。这些结果解释了内在的异质性如何使Ping节奏与周期性强迫或其他ping节奏同步,以在其频率不匹配的情况下更广泛。我们展示了与节奏同步的类似机制。我们的结果确定了神经元异质性在耦合$γ$ -RHARSTHS同步中的潜在功能,这可能在通过连贯性通过通信的神经信息传递中发挥作用。
The synchronization of different $γ$-rhythms arising in different brain areas has been implicated in various cognitive functions. Here, we focus on the effect of the ubiquitous neuronal heterogeneity on the synchronization of PING (pyramidal-interneuronal network gamma) and ING (interneuronal network gamma) rhythms. The synchronization properties of rhythms depends on the response of their collective phase to external input. We therefore determined the macroscopic phase-response curve for finite-amplitude perturbations (fmPRC), using numerical simulation of all-to-all coupled networks of integrate-and-fire (IF) neurons exhibiting either PING or ING rhythms. We show that the intrinsic neuronal heterogeneity can qualitatively modify the fmPRC. While the phase-response curve for the individual IF-neurons is strictly positive (type I), the fmPRC can be biphasic and exhibit both signs (type II). Thus, for PING rhythms, an external excitation to the excitatory cells can, in fact, delay the collective oscillation of the network, even though the same excitation would lead to an advance when applied to uncoupled neurons. This paradoxical delay arises when the external excitation modifies the internal dynamics of the network by causing additional spikes of inhibitory neurons, whose delaying within-network inhibition outweighs the immediate advance caused by the external excitation. These results explain how intrinsic heterogeneity allows the PING rhythm to become synchronized with a periodic forcing or another PING rhythm for a wider range in the mismatch of their frequencies. We demonstrate a similar mechanism for the synchronization of ING rhythms. Our results identify a potential function of neuronal heterogeneity in the synchronization of coupled $γ$-rhythms, which may play a role in neural information transfer via communication through coherence.