论文标题

Brolgar:一个R软件包,以图形方式和分析浏览纵向数据

brolgar: An R package to BRowse Over Longitudinal Data Graphically and Analytically in R

论文作者

Tierney, Nicholas J, Cook, Dianne, Prvan, Tania

论文摘要

纵向(面板)数据提供了检查个体时间模式的机会,因为在不同的时间点上收集了对同一人的测量值。通常使用“意大利面图”可视化数据,其中每个人都会绘制线路图。当覆盖在一个地块中时,它可以带有一碗意大利面。即使有少数受试者,这些地块的载荷过多,无法轻松阅读。个体差异的有趣方面在噪音中丢失了。纵向数据通常以分层线性模型进行建模,以捕获个人之间的总体趋势和变化,同时考虑到各种依赖水平。但是,这些模型可能很难拟合,并且可能会错过异常的单个模式。更好的视觉工具可以帮助诊断纵向模型,并更好地捕获个人体验。本文介绍了R软件包,Brolgar(以图形方式和分析性地浏览纵向数据),该软件包提供了纵向数据中识别和总结有趣的单个模式的工具。

Longitudinal (panel) data provide the opportunity to examine temporal patterns of individuals, because measurements are collected on the same person at different, and often irregular, time points. The data is typically visualised using a "spaghetti plot", where a line plot is drawn for each individual. When overlaid in one plot, it can have the appearance of a bowl of spaghetti. With even a small number of subjects, these plots are too overloaded to be read easily. The interesting aspects of individual differences are lost in the noise. Longitudinal data is often modelled with a hierarchical linear model to capture the overall trends, and variation among individuals, while accounting for various levels of dependence. However, these models can be difficult to fit, and can miss unusual individual patterns. Better visual tools can help to diagnose longitudinal models, and better capture the individual experiences. This paper introduces the R package, brolgar (BRowse over Longitudinal data Graphically and Analytically in R), which provides tools to identify and summarise interesting individual patterns in longitudinal data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源