论文标题

流驱动光谱混乱(FSC)方法用于模拟任意阶的非线性随机动力学系统的长期动力学

Flow-driven spectral chaos (FSC) method for simulating long-time dynamics of arbitrary-order non-linear stochastic dynamical systems

论文作者

Esquivel, Hugo, Prakash, Arun, Lin, Guang

论文摘要

不确定性定量技术,例如时间依赖性的广义多项式混乱(TD-GPC),使用自适应正交基础,以更好地代表解决方案空间的随机部分(aka随机函数空间)。但是,由于随机函数空间是使用张量产品构建的,因此已知基于TD-GPC的方法遭受维数的诅咒。在本文中,我们介绍了一种称为“流驱动光谱混乱”(FSC)的新数值方法,该方法克服了在随机功能空间水平上的维度诅咒。所提出的方法不仅比现有的基于TD-GPC的方法更有效,而且更准确。 FSC方法使用“丰富的随机流图”的概念来有效地跟踪有限维随机函数空间的演变。为了将概率信息从一个随机函数空间传递到另一个随机函数空间,在此开发和研究了两种方法。在第一种方法中,概率信息以均等意义传输,而在第二种方法中,使用为此目的开发的新定理进行了准确完成转移。 FSC方法可以用高保真度量化不确定性,尤其是对于由任意顺序ODES控制的随机动力学系统的长期响应。提出了六个代表性的数值示例,包括非线性问题(Van-der-Pol振荡器),以证明FSC方法的性能并证实其出色的数值特性的主张。最后,使用参数高维的随机问题来证明,当FSC方法与蒙特卡洛整合结合使用时,可以完全克服维数的诅咒。

Uncertainty quantification techniques such as the time-dependent generalized polynomial chaos (TD-gPC) use an adaptive orthogonal basis to better represent the stochastic part of the solution space (aka random function space) in time. However, because the random function space is constructed using tensor products, TD-gPC-based methods are known to suffer from the curse of dimensionality. In this paper, we introduce a new numerical method called the 'flow-driven spectral chaos' (FSC) which overcomes this curse of dimensionality at the random-function-space level. The proposed method is not only computationally more efficient than existing TD-gPC-based methods but is also far more accurate. The FSC method uses the concept of 'enriched stochastic flow maps' to track the evolution of a finite-dimensional random function space efficiently in time. To transfer the probability information from one random function space to another, two approaches are developed and studied herein. In the first approach, the probability information is transferred in the mean-square sense, whereas in the second approach the transfer is done exactly using a new theorem that was developed for this purpose. The FSC method can quantify uncertainties with high fidelity, especially for the long-time response of stochastic dynamical systems governed by ODEs of arbitrary order. Six representative numerical examples, including a nonlinear problem (the Van-der-Pol oscillator), are presented to demonstrate the performance of the FSC method and corroborate the claims of its superior numerical properties. Finally, a parametric, high-dimensional stochastic problem is used to demonstrate that when the FSC method is used in conjunction with Monte Carlo integration, the curse of dimensionality can be overcome altogether.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源