论文标题

在量子图中发现隐藏层

Discovering hidden layers in quantum graphs

论文作者

Gajewski, Łukasz G., Sienkiewicz, Julian, Hołyst, Janusz A.

论文摘要

在复杂的网络中找到隐藏的层是现代科学中的一个重要且非平凡的问题。我们探索量子图的框架,以确定是否存在多层系统的隐藏部分,如果是这样,则其范围是多少,即有多少个未知层。假设所有可用的信息都是网络单层上波传播的时间演变,那么确实可以发现仅通过观察动力学而隐藏的东西。我们提供了有关合成网络和现实世界网络的证据,表明波动动力学的频谱可以以其他频率峰的形式表达不同的特征。这些峰表现出对参与传播的层数的依赖,从而允许提取上述数量。我们表明,实际上,只要有足够的观察时间,就可以完全重建行范围差的邻接矩阵频谱。我们将我们的命题与使用修改后的机器学习方法进行比较,以进行多层系统,即波数据包签名方法。

Finding hidden layers in complex networks is an important and a non-trivial problem in modern science. We explore the framework of quantum graphs to determine whether concealed parts of a multi-layer system exist and if so then what is their extent, i.e., how many unknown layers there are. Assuming that all information available is the time evolution of a wave propagation on a single layer of a network it is indeed possible to uncover that which is hidden by merely observing the dynamics. We present evidence on both synthetic and real-world networks that the frequency spectrum of the wave dynamics can express distinct features in the form of additional frequency peaks. These peaks exhibit dependence on the number of layers taking part in the propagation and thus allowing for the extraction of said number. We show that in fact, with sufficient observation time, one can fully reconstruct the row-normalised adjacency matrix spectrum. We compare our propositions to a machine learning approach using a modified, for the purposes of multi-layer systems, wave packet signature method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源