论文标题
PATCHMATCHNET:学习的多视图补丁立体声
PatchmatchNet: Learned Multi-View Patchmatch Stereo
论文作者
论文摘要
我们提出了PatchMatchnet,这是一种用于高分辨率多视觉立体声的贴片的新颖且可学习的级联配方。通过高计算速度和低内存要求,PatchMatchNet可以处理更高的分辨率图像,并且比使用3D成本量正规化的竞争对手更适合于资源有限的设备运行。我们第一次在端到端可训练的体系结构中引入了迭代多尺度贴片摩擦,并使用每种迭代的新颖和学到的自适应传播和评估方案来改进PatchMatch核心算法。广泛的实验表明,我们在DTU,Tank和Temples和Eth3d上的方法的竞争性能和概括,但效率明显高于所有现有最佳模型:至少比最终的最终方法快两倍,而最先进的方法的记忆使用率却少两倍。
We present PatchmatchNet, a novel and learnable cascade formulation of Patchmatch for high-resolution multi-view stereo. With high computation speed and low memory requirement, PatchmatchNet can process higher resolution imagery and is more suited to run on resource limited devices than competitors that employ 3D cost volume regularization. For the first time we introduce an iterative multi-scale Patchmatch in an end-to-end trainable architecture and improve the Patchmatch core algorithm with a novel and learned adaptive propagation and evaluation scheme for each iteration. Extensive experiments show a very competitive performance and generalization for our method on DTU, Tanks & Temples and ETH3D, but at a significantly higher efficiency than all existing top-performing models: at least two and a half times faster than state-of-the-art methods with twice less memory usage.