论文标题
编织组的有限图像同构及其概括
Finite image homomorphisms of the braid group and its generalizations
论文作者
论文摘要
使用完全对称的集合,Chudnovsky,Kordek,Li和Partin对编织组的非阿布莱人有限商的基数产生了超大的下限。在本文中,我们使用多个完全对称的集合开发了新技术,以计算编织组的非亚洲有限商中的元素。使用这些技术,我们改善了Chudnovsky等人发现的下限。我们在虚拟和焊接的辫子组中展示了完全对称的集合,并使用我们的新技术为虚拟和焊接辫子组的有限商找到了超大的界限。
Using totally symmetric sets, Chudnovsky, Kordek, Li, and Partin gave a superexponential lower bound on the cardinality of non-abelian finite quotients of the braid group. In this paper, we develop new techniques using multiple totally symmetric sets to count elements in non-abelian finite quotients of the braid group. Using these techniques, we improve the lower bound found by Chudnovsky et al. We exhibit totally symmetric sets in the virtual and welded braid groups, and use our new techniques to find superexponential bounds for the finite quotients of the virtual and welded braid groups.