论文标题
O-RAN的智能和学习,用于数据驱动的Nextg蜂窝网络
Intelligence and Learning in O-RAN for Data-driven NextG Cellular Networks
论文作者
论文摘要
下一代(NextG)蜂窝网络将基于本地云,并基于可编程,虚拟化和分解的体系结构。控制函数与硬件结构的分离以及标准化控制接口的引入将使自定义闭路循环的定义最终能够实现嵌入式智能和实时分析,从而有效地实现了自主和自动计算网络的愿景。本文探讨了O-Ran Alliance提出的分类网络体系结构,作为NextG网络的关键推动者。在这种架构环境中,我们讨论了数据驱动的优化方法的潜力,挑战和局限性,以对不同时间标准进行网络控制。我们还介绍了与O-Ran-Cumiant软件组件与开源全堆栈软件蜂窝网络的第一个大规模集成。在世界上最大的无线网络仿真器上进行的实验表明,通过深度强化学习剂来证明实时分析和控制的闭环整合。我们还通过在接近实时运行智能控制器上运行的XAPP来显示无线电访问网络(RAN)控制的可行性,以优化共存网络切片的调度策略,利用O-Ran开放接口在网络边缘收集数据。
Next Generation (NextG) cellular networks will be natively cloud-based and built upon programmable, virtualized, and disaggregated architectures. The separation of control functions from the hardware fabric and the introduction of standardized control interfaces will enable the definition of custom closed-control loops, which will ultimately enable embedded intelligence and real-time analytics, thus effectively realizing the vision of autonomous and self-optimizing networks. This article explores the disaggregated network architecture proposed by the O-RAN Alliance as a key enabler of NextG networks. Within this architectural context, we discuss the potential, the challenges, and the limitations of data-driven optimization approaches to network control over different timescales. We also present the first large-scale integration of O-RAN-compliant software components with an open-source full-stack softwarized cellular network. Experiments conducted on Colosseum, the world's largest wireless network emulator, demonstrate closed-loop integration of real-time analytics and control through deep reinforcement learning agents. We also show the feasibility of Radio Access Network (RAN) control through xApps running on the near real-time RAN Intelligent Controller, to optimize the scheduling policies of co-existing network slices, leveraging the O-RAN open interfaces to collect data at the edge of the network.