论文标题
注意改进的射电星系分类
Attention-gating for improved radio galaxy classification
论文作者
论文摘要
在这项工作中,我们将注意力作为使用卷积神经网络分类的最先进机制的状态。我们提出了一个基于注意力的模型,该模型与以前的分类器相同,而使用该字段中下一个最小的经典CNN应用程序的参数少50%。我们在定量上证明了在注意力门口中使用的归一化和聚合方法的选择如何影响单个模型的输出,并证明可将所得的注意图用于解释模型做出的分类选择。我们观察到,我们的模型确定的显着区域与专家人类分类器将参加以进行等效分类的地区很好地保持一致。我们表明,虽然选择正常化和聚集只能最小化单个模型的性能,但它可以显着影响各自的注意图的可解释性,并选择一个模型与天文学家如何通过眼睛对无线电源分类的模型,但用户可以以更有效的方式使用该模型。
In this work we introduce attention as a state of the art mechanism for classification of radio galaxies using convolutional neural networks. We present an attention-based model that performs on par with previous classifiers while using more than 50% fewer parameters than the next smallest classic CNN application in this field. We demonstrate quantitatively how the selection of normalisation and aggregation methods used in attention-gating can affect the output of individual models, and show that the resulting attention maps can be used to interpret the classification choices made by the model. We observe that the salient regions identified by the our model align well with the regions an expert human classifier would attend to make equivalent classifications. We show that while the selection of normalisation and aggregation may only minimally affect the performance of individual models, it can significantly affect the interpretability of the respective attention maps and by selecting a model which aligns well with how astronomers classify radio sources by eye, a user can employ the model in a more effective manner.