论文标题
低密度混乱状态的截短相关性的尖锐衰减
Pointwise decay of truncated correlations in chaotic states at low density
论文作者
论文摘要
我们研究了简单的非平衡分布,这些分布描述了通过对boltzmann-Grad缩放$ε\ rightarrow 0 $在boltzmann-grad缩放缩放中,通过对电势$ ϕ(x/ε)$相互作用的经典气体。我们建立了任意顺序的截断相关性(累积)的界限,这是集群中粒子内部分离的函数,显示了有限范围相互作用的指数衰减。
We study simple nonequilibrium distributions describing a classical gas of particles interacting via a pair potential $ϕ(x/ε)$, in the Boltzmann-Grad scaling $ε \rightarrow 0$. We establish bounds for truncated correlations (cumulants) of arbitrary order as a function of the internal separation of particles in a cluster, showing exponential decay for finite range interactions.