论文标题

Visevol:通过进化优化支持超参数搜索的视觉分析

VisEvol: Visual Analytics to Support Hyperparameter Search through Evolutionary Optimization

论文作者

Chatzimparmpas, Angelos, Martins, Rafael M., Kucher, Kostiantyn, Kerren, Andreas

论文摘要

在机器学习(ML)模型的训练阶段,通常有必要配置多个超参数。此过程在计算密集型上,需要进行大量搜索,以推断给给定问题的最佳超参数设置。大多数ML模型在内部都很复杂,培训涉及反复试验的过程,这可能会显着影响预测结果,从而加剧了挑战。此外,ML算法的每个高参数可能与其他算法交织在一起,并且改变它可能会对其余的超参数产生不可预见的影响。进化优化是尝试解决这些问题的一种有前途的方法。根据这种方法,可以存储性能模型,而其余模型则通过跨界和受遗传算法启发的突变过程改善。我们提出了Visevol,这是一种视觉分析工具,该工具支持对超参数的交互式探索和在此进化过程中的干预。总而言之,我们提出的工具可帮助用户通过进化来生成新的模型,并最终探索广泛的超参数空间的各个区域中强大的超参数组合。结果是一个投票合奏(具有平等权利),可以提高最终的预测绩效。 Visevol的实用性和适用性通过两种用例以及与评估该工具有效性的ML专家进行访谈。

During the training phase of machine learning (ML) models, it is usually necessary to configure several hyperparameters. This process is computationally intensive and requires an extensive search to infer the best hyperparameter set for the given problem. The challenge is exacerbated by the fact that most ML models are complex internally, and training involves trial-and-error processes that could remarkably affect the predictive result. Moreover, each hyperparameter of an ML algorithm is potentially intertwined with the others, and changing it might result in unforeseeable impacts on the remaining hyperparameters. Evolutionary optimization is a promising method to try and address those issues. According to this method, performant models are stored, while the remainder are improved through crossover and mutation processes inspired by genetic algorithms. We present VisEvol, a visual analytics tool that supports interactive exploration of hyperparameters and intervention in this evolutionary procedure. In summary, our proposed tool helps the user to generate new models through evolution and eventually explore powerful hyperparameter combinations in diverse regions of the extensive hyperparameter space. The outcome is a voting ensemble (with equal rights) that boosts the final predictive performance. The utility and applicability of VisEvol are demonstrated with two use cases and interviews with ML experts who evaluated the effectiveness of the tool.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源