论文标题
四元基金低音订单的最佳旋转选择性
Optimal spinor selectivity for quaternion Bass orders
论文作者
论文摘要
令$ a $为数字字段$ f $的四元素代数,而$ \ nathcal {o} $是$ o_f $ - $ a $的全等级订单。让$ k $是$ f $的二次场扩展,嵌入$ a $,而$ b $是$ k $中的$ o_f $ order。假设$ \ Mathcal {o} $是低音订单,在所有$ f $的二元序列上都表现得很好。我们为$ b $提供了必要且充分的条件,以最佳地选择$ \ Mathcal {O} $的属。这部分将先前的结果概括为C. maclachlan [Quathernion代数中的最佳嵌入式的最佳(纺纱)选择性。 J.数字理论,128(10):2852-2860,2008],用于无方级别的Eichler顺序,并独立于M. Arenas等人。 [在最佳嵌入和树上。 J.数字理论,193:91-117,2018]和J. Voight [第31章,Quaternion代数,数学研究生文本的第288卷。 Springer-verlag,2021年],用于任意级别的Eichler命令。
Let $A$ be a quaternion algebra over a number field $F$, and $\mathcal{O}$ be an $O_F$-order of full rank in $A$. Let $K$ be a quadratic field extension of $F$ that embeds into $A$, and $B$ be an $O_F$-order in $K$. Suppose that $\mathcal{O}$ is a Bass order that is well-behaved at all the dyadic primes of $F$. We provide a necessary and sufficient condition for $B$ to be optimally spinor selective for the genus of $\mathcal{O}$. This partially generalizes previous results on optimal (spinor) selectivity by C. Maclachlan [Optimal embeddings in quaternion algebras. J. Number Theory, 128(10):2852-2860, 2008] for Eichler orders of square-free levels, and independently by M. Arenas et al. [On optimal embeddings and trees. J. Number Theory, 193:91-117, 2018] and by J. Voight [Chapter 31, Quaternion algebras, volume 288 of Graduate Texts in Mathematics. Springer-Verlag, 2021] for Eichler orders of arbitrary levels.