论文标题

有限的von Neumann代数中的一些非光谱DT操作员

Some non-spectral DT-operators in finite von Neumann algebras

论文作者

Dykema, Ken, Krishnaswamy-Usha, Amudhan

论文摘要

鉴于dt-operator $ z $,其棕色度量是径向对称的并且具有一定的浓度属性,因此表明$ z $在邓福德的意义上不是光谱。这是通过证明$ z $的某些互补haagerup-schultz预测之间的角度为零来完成的。还证明了对代数值循环运算符的规范和痕迹的新估算值,也证明了代数 - 代数。

Given a DT-operator $Z$ whose Brown measure is radially symmetric and has a certain concentration property, it is shown that $Z$ is not spectral in the sense of Dunford. This is accomplished by showing that the angles between certain complementary Haagerup-Schultz projections of $Z$ are zero. New estimates on norms and traces of powers of algebra-valued circular operators over commutative C$^*$-algebras are also proved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源