论文标题
有限的von Neumann代数中的一些非光谱DT操作员
Some non-spectral DT-operators in finite von Neumann algebras
论文作者
论文摘要
鉴于dt-operator $ z $,其棕色度量是径向对称的并且具有一定的浓度属性,因此表明$ z $在邓福德的意义上不是光谱。这是通过证明$ z $的某些互补haagerup-schultz预测之间的角度为零来完成的。还证明了对代数值循环运算符的规范和痕迹的新估算值,也证明了代数 - 代数。
Given a DT-operator $Z$ whose Brown measure is radially symmetric and has a certain concentration property, it is shown that $Z$ is not spectral in the sense of Dunford. This is accomplished by showing that the angles between certain complementary Haagerup-Schultz projections of $Z$ are zero. New estimates on norms and traces of powers of algebra-valued circular operators over commutative C$^*$-algebras are also proved.