论文标题

在随机环境中搜索电动汽车充电站

Electric Vehicle Charging Station Search in Stochastic Environments

论文作者

Guillet, Marianne, Hiermann, Gerhard, Kröller, Alexander, Schiffer, Maximilian

论文摘要

电动汽车是未来流动性系统的核心组成部分,因为它们有望减少当地的有害和细粉尘排放和二氧化碳排放量,如果由清洁能源喂养。但是,尽管政府激励措施很大,但到目前为止,迄今为止的电动汽车的采用却没有预期。这种缓慢采用的原因之一是驾驶员的感知范围焦虑,尤其是对于单独拥有的车辆。在这里,不良的用户经验,例如,传统的汽车阻止充电站或实时可用性数据不一致,表现出驾驶员的范围焦虑。在此背景下,我们研究了随机搜索算法,这些算法可以很容易地部署在当今的导航系统中,以最大程度地减少绕道以达到可用的充电站。我们对搜索进行建模,例如有限的地平线马尔可夫决策过程,并提出了一个全面的框架,该框架考虑了不同的问题变体,加速技术和三种解决方案算法:精确的标记算法,启发式标记算法和推出算法。广泛的数值研究表明,我们的算法大大减少了找到免费充电站的预期时间,同时增加了解决方案质量鲁棒性以及与近视方法相比搜索成功的可能性。

Electric vehicles are a central component of future mobility systems as they promise to reduce local noxious and fine dust emissions and CO2 emissions, if fed by clean energy sources. However, the adoption of electric vehicles so far fell short of expectations despite significant governmental incentives. One reason for this slow adoption is the drivers' perceived range anxiety, especially for individually owned vehicles. Here, bad user-experiences, e.g., conventional cars blocking charging stations or inconsistent real-time availability data, manifest the drivers' range anxiety. Against this background, we study stochastic search algorithms, that can be readily deployed in today's navigation systems in order to minimize detours to reach an available charging station. We model such a search as a finite horizon Markov decision process and present a comprehensive framework that considers different problem variants, speed-up techniques, and three solution algorithms: an exact labeling algorithm, a heuristic labeling algorithm, and a rollout algorithm. Extensive numerical studies show that our algorithms significantly decrease the expected time to find a free charging station while increasing the solution quality robustness and the likelihood that a search is successful compared to myopic approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源