论文标题

基于神经网络的片上光谱法使用可伸缩等离子体编码器

Neural network-based on-chip spectroscopy using a scalable plasmonic encoder

论文作者

Brown, Calvin, Goncharov, Artem, Ballard, Zachary, Fordham, Mason, Clemens, Ashley, Qiu, Yunzhe, Rivenson, Yair, Ozcan, Aydogan

论文摘要

传统光谱仪受到按大小,成本,信噪比(SNR)和光谱分辨率设定的权衡限制。在这里,我们使用紧凑且低成本的芯片感应方案展示了一个基于深度学习的光谱重建框架,该方案不受基于光谱光谱的固有的设计权衡来限制。该系统采用了血浆光谱编码器芯片,该芯片包含252个不同的纳米荷尔阵列的不同瓷砖,该纳米荷尔阵列使用可伸缩和低成本的烙印光刻法制造,其中每个瓷砖具有独特的几何形状,因此是独特的光学传输光谱。感兴趣的照明频谱直接影响等离子编码器,而CMOS图像传感器捕获了介于两者之间的传输光,没有任何镜头,光栅或其他光学组件,使整个硬件高度紧凑,轻质重量和现场容易。然后,受过训练的神经网络使用来自光谱编码器的传输强度信息以馈送方式和非词语方式重建未知光谱。受益于神经网络的并行化,每光谱的平均推理时间为〜28微秒,与其他计算光谱方法相比,数量级更快。当对看不见的新光谱(n = 14,648)的复杂性不同时,我们的基于学习深度学习的系统将96.86%的频谱峰识别为平均峰定位误差,带宽误差,高度误差,高度误差和0.19 nm,0.18 nm和7.60%。该系统还高度耐受地耐标志过程中可能出现的制造缺陷,这进一步使其非常适合需要具有成本效益,可实地和敏感高分辨率的高分辨率光谱学工具的应用。

Conventional spectrometers are limited by trade-offs set by size, cost, signal-to-noise ratio (SNR), and spectral resolution. Here, we demonstrate a deep learning-based spectral reconstruction framework, using a compact and low-cost on-chip sensing scheme that is not constrained by the design trade-offs inherent to grating-based spectroscopy. The system employs a plasmonic spectral encoder chip containing 252 different tiles of nanohole arrays fabricated using a scalable and low-cost imprint lithography method, where each tile has a unique geometry and, thus, a unique optical transmission spectrum. The illumination spectrum of interest directly impinges upon the plasmonic encoder, and a CMOS image sensor captures the transmitted light, without any lenses, gratings, or other optical components in between, making the entire hardware highly compact, light-weight and field-portable. A trained neural network then reconstructs the unknown spectrum using the transmitted intensity information from the spectral encoder in a feed-forward and non-iterative manner. Benefiting from the parallelization of neural networks, the average inference time per spectrum is ~28 microseconds, which is orders of magnitude faster compared to other computational spectroscopy approaches. When blindly tested on unseen new spectra (N = 14,648) with varying complexity, our deep-learning based system identified 96.86% of the spectral peaks with an average peak localization error, bandwidth error, and height error of 0.19 nm, 0.18 nm, and 7.60%, respectively. This system is also highly tolerant to fabrication defects that may arise during the imprint lithography process, which further makes it ideal for applications that demand cost-effective, field-portable and sensitive high-resolution spectroscopy tools.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源