论文标题
与分子薄膜多模式振动强耦合的角度无关的等离激元底物
Angle-Independent Plasmonic Substrates for Multi-Mode Vibrational Strong Coupling with Molecular Thin Films
论文作者
论文摘要
最近已经探索了基于等离子共振的分子与光腔的振动强耦合,因为等离子近场可以提供较强的偶联,以在亚分量有限的限量中提供强耦合。这种场定位使耦合强度最大化,这对于修改分子的振动反应至关重要,从而操纵化学反应。在这里,我们展示了与角度无关的等离激元纳米底物,它克服了传统的Fabry-Perot光学腔的局限性,因为无论分子取向如何,设计都可以与底物表面上的所有分子强烈搭配。我们证明,等离子底物与PMMA沉积膜的C振动拉伸提供了强耦合。我们还表明,等离子体共振的较大线宽允许在硫酸铜单水合物薄膜中同时耦合到两个正交水对称和不对称振动模式,沉积在底物表面上。开发了一个三耦合振荡器模型,以分析与这两种水模式的等离子体共振的耦合强度。通过精确控制纳米风格直径,等离子共振通过模式系统地调节,并且两种模式的耦合强度随等离子体频率的函数而变化,并且与同时达到的直径范围实现的两种模式都具有强大的耦合。这项工作可能有助于进一步研究通过同时扰动多种振动模式并提高亚分化有限体积的偶联强度,从而通过扰动多种振动模式来操纵分子的化学景观。
Vibrational strong coupling of molecules to optical cavities based on plasmonic resonances has been explored recently, because plasmonic near-fields can provide strong coupling in sub-diffraction limited volumes. Such field localization maximizes coupling strength, which is crucial for modifying the vibrational response of molecules and, thereby, manipulating chemical reactions. Here, we demonstrate an angle-independent plasmonic nanodisk substrate that overcomes limitations of traditional Fabry-Perot optical cavities, because the design can strongly couple with all molecules on the surface of the substrate regardless of molecular orientation. We demonstrate that the plasmonic substrate provides strong coupling with the C=O vibrational stretch of deposited films of PMMA. We also show that the large linewidths of the plasmon resonance allows for simultaneous strong coupling to two, orthogonal water symmetric and asymmetric vibrational modes in a thin film of copper sulfate monohydrate deposited on the substrate surface. A three-coupled-oscillator model is developed to analyze the coupling strength of the plasmon resonance with these two water modes. With precise control over the nanodisk diameter, the plasmon resonance is tuned systematically through the modes, with the coupling strength to both modes varying as a function of the plasmon frequency, and with strong coupling to both modes achieved simultaneously for a range of diameters. This work may aid further studies into manipulation of the ground-state chemical landscape of molecules by perturbing multiple vibrational modes simultaneously and increasing the coupling strength in sub-diffraction limited volumes.