论文标题

在组合癌症治疗中应用数学模型的前景

Prospect for application of mathematical models in combination cancer treatments

论文作者

Malinzi, Joseph, Basita, Kevin Bosire, Padidar, Sara, Adeola, Henry A.

论文摘要

靶向治疗药物对癌症治疗的长期疗效可以受到耐药性的类型和耐药性的发展的显着限制。实验研究表明,增强癌细胞耐药性获取的因素包括细胞异质性,药物靶向改变,药物失活,DNA损伤修复,药物外排,细胞死亡抑制以及对靶向治疗的微环境适应性。使用联合癌症疗法(CCT)来克服这些分子和病理生理瓶颈并改善癌症患者的总体存活率。 CCT经常使用多种组合的作用模式,因此有可能构成一种有希望的克服耐药性的方法。考虑到临床药物试验和基本医学研究所涉及的巨大成本,人力努力,时间和道德问题,数学建模和分析可能会为发现更好的癌症治疗方案而产生巨大贡献。在本文中,我们回顾了迄今为止为癌症管理开发的有关CCT的数学模型。突出了开放问题,并根据毒性,耐药性,生存益处,临床前试验和其他副作用来讨论合理的组合。

The long-term efficacy of targeted therapeutics for cancer treatment can be significantly limited by the type of therapy and development of drug resistance, inter alia. Experimental studies indicate that the factors enhancing acquisition of drug resistance in cancer cells include cell heterogeneity, drug target alteration, drug inactivation, DNA damage repair, drug efflux, cell death inhibition, as well as microenvironmental adaptations to targeted therapy, among others. Combination cancer therapies (CCTs) are employed to overcome these molecular and pathophysiological bottlenecks and improve the overall survival of cancer patients. CCTs often utilize multiple combinatorial modes of action and thus potentially constitute a promising approach to overcome drug resistance. Considering the colossal cost, human effort, time and ethical issues involved in clinical drug trials and basic medical research, mathematical modeling and analysis can potentially contribute immensely to the discovery of better cancer treatment regimens. In this article, we review mathematical models on CCTs developed thus far for cancer management. Open questions are highlighted and plausible combinations are discussed based on the level of toxicity, drug resistance, survival benefits, preclinical trials and other side effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源