论文标题
核心壳铁电纳米颗粒中域形态的柔性弹性控制因子:软和刚性壳
Flexo-Elastic Control Factors of Domain Morphology in Core-Shell Ferroelectric Nanoparticles: Soft and Rigid Shells
论文作者
论文摘要
在Landau-Ginzburg-Devonshire方法的框架内,我们探讨了弹性各向异性,电曲,挠性耦合和不匹配菌株对域结构形态中球形形状的核心核心 - 壳纳米颗粒中的影响。我们对多轴铁纳米颗粒核心进行有限元建模(FEM),覆盖有弹性 - 异位柔软的软或弹性 - 动脉刺激的刚性僵硬的副壳,有和没有不匹配菌株。如果核心覆盖有软壳,则FEM结果表明,在室温下,如果电绞击耦合较弱,则具有偶极内核的单个极化涡流可能是稳定的。随着各向异性电动耦合的增加,涡流消失了,并被复杂的通量闭合结构所取代,这些结构在赤道平面形成,并转化为具有中央180度域壁的延长涡流。由于各向异性电迹,这种复杂的结构域形态在核心中发展,而挠性耦合导致极化等值面的额外曲率和扭曲。与此相反,FEM对覆盖有刚性外壳的核心进行的FEM表明,在室温下,壳的各向异性弹性特性可以稳定具有三个通量闭合域的涡旋状结构,这些结构逐渐在核心的赤道平面上逐渐交叉,并转化为核心电池附近的120度域。挠性耦合导致通量关闭域壁的明显卷曲。不匹配菌株补偿了芯局部弯曲结构域的卷曲,这些芯被弹性 - 动脉质刚性壳限制在核心中。我们的分析揭示了不同类型的拓扑缺陷,即Bloch点结构(BPS)和Ising线,这些缺陷在覆盖有软壳或刚性外壳的铁电芯中形成。
Within the framework of the Landau-Ginzburg-Devonshire approach we explore the impact of elastic anisotropy, electrostriction, flexoelectric couplings, and mismatch strain on the domain structure morphology in ferroelectric core-shell nanoparticles of spherical shape. We perform finite element modelling (FEM) for multiaxial ferroelectric nanoparticle cores covered with an elastically-isotropic soft or elastically-anisotropic rigid paraelectric shell, with and without mismatch strains. In the case of a core covered with a soft shell, the FEM results show that at room temperature a single polarization vortex with a dipolar kernel can be stable if the electrostriction coupling is weak. With increasing anisotropic electrostriction coupling, the vortex disappears and is replaced by complex flux-closure structures, which are formed in the equatorial plane and transform into an elongated vortex with a central 180-degree domain wall near the core poles. This complex domain morphology develops in the core due to the anisotropic electrostriction, and the flexoelectric coupling leads to an additional curvature and twist of the polarization isosurfaces. In contrast to this, FEM performed for a core covered with a rigid shell shows that, at room temperature, the anisotropic elastic properties of the shell can stabilize vortex-like structures with three flux-closure domains, which gradually cross in the equatorial plane of the core and transform into 120-degree domains near the core poles. The flexoelectric coupling leads to a noticeable curling of the flux-closure domain walls. A mismatch strain compensates the curling of the flux-closure domains in the core confined by the elastically-anisotropic rigid shell. Our analysis reveals different types of topological defects, namely Bloch point structures (BPS) and Ising lines, that form in a ferroelectric core covered with a soft or rigid shell.