论文标题

深度动态建模只有两个时间点:我们仍然可以允许单个轨迹吗?

Deep dynamic modeling with just two time points: Can we still allow for individual trajectories?

论文作者

Hackenberg, Maren, Harms, Philipp, Pfaffenlehner, Michelle, Pechmann, Astrid, Kirschner, Janbernd, Schmidt, Thorsten, Binder, Harald

论文摘要

纵向生物医学数据通常以稀疏的时间网格和个人特定的发展模式为特征。具体而言,在流行病学队列研究和临床注册表中,我们面临着一个问题,即在研究的早期阶段可以从数据中学到什么,而只有基线表征和一个后续测量。受到最新进展的启发,该进步允许将深度学习与动态建模相结合,我们研究了这种方法是否可用于发现复杂的结构,特别是对于一个极端的小数据设置,每个人只有两个观察时间点。然后可以使用不规则的间距来通过利用个人相似性来获得有关个体动态的更多信息。我们简要概述了如何将变性自动编码器(VAE)作为一种深度学习方法与用于动态建模的普通微分方程(OD)相关联,然后通过包括定期假设和个体的相似性,专门研究这种方法的可行性。我们还提供了这种深度学习方法的描述,作为一项过滤任务,以提供统计观点。使用模拟数据,我们显示了该方法在多大程度上可以从具有两个和四个未知参数的ODE系统中恢复单个轨迹,并推断具有相似轨迹的个体组,以及它分解的位置。结果表明,即使在极端的数据设置中,这种动态深度学习方法也可以有用,但需要仔细调整。

Longitudinal biomedical data are often characterized by a sparse time grid and individual-specific development patterns. Specifically, in epidemiological cohort studies and clinical registries we are facing the question of what can be learned from the data in an early phase of the study, when only a baseline characterization and one follow-up measurement are available. Inspired by recent advances that allow to combine deep learning with dynamic modeling, we investigate whether such approaches can be useful for uncovering complex structure, in particular for an extreme small data setting with only two observations time points for each individual. Irregular spacing in time could then be used to gain more information on individual dynamics by leveraging similarity of individuals. We provide a brief overview of how variational autoencoders (VAEs), as a deep learning approach, can be linked to ordinary differential equations (ODEs) for dynamic modeling, and then specifically investigate the feasibility of such an approach that infers individual-specific latent trajectories by including regularity assumptions and individuals' similarity. We also provide a description of this deep learning approach as a filtering task to give a statistical perspective. Using simulated data, we show to what extent the approach can recover individual trajectories from ODE systems with two and four unknown parameters and infer groups of individuals with similar trajectories, and where it breaks down. The results show that such dynamic deep learning approaches can be useful even in extreme small data settings, but need to be carefully adapted.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源