论文标题

五维非洛伦兹形式田地理论及其与六维的关系

Five-Dimensional Non-Lorentzian Conformal Field Theories and their Relation to Six-Dimensions

论文作者

Lambert, Neil, Lipstein, Arthur, Mouland, Rishi, Richmond, Paul

论文摘要

我们研究具有$ su(1,3)$共形的对称性的五维非Lorentzian理论的相关函数。最近获得了此类理论的例子,它是$ω$成型的Yang-Mills Lagrangians,由于在共同压实的Minkowski空间上的六维超符合场理论而产生。与Lorentzian共形场理论中的常规相关因子相比,相关器具有丰富的结构,具有许多新颖的特性。此外,用尺寸减小的傅立叶模式数字识别internon数字提供了希望以五维拉格朗日理论来制定六维形式的野外理论。为此,我们表明,六维相关功能的傅立叶分解解决了$ su(1,3)$对称性的病房身份,尽管可以更通用的解决方案。相反,我们说明了如何从五维理论的六维相关函数中重建六维相关函数,并在2分和3分明确地进行。我们还表明,在合适的分解限制$ω\至0 $中,相关函数成为DLCQ描述的功能。

We study correlation functions in five-dimensional non-Lorentzian theories with an $SU(1,3)$ conformal symmetry. Examples of such theories have recently been obtained as $Ω$-deformed Yang-Mills Lagrangians arising from a null reduction of six-dimensional superconformal field theories on a conformally compactified Minkowski space. The correlators exhibit a rich structure with many novel properties compared to conventional correlators in Lorentzian conformal field theories. Moreover, identifying the instanton number with the Fourier mode number of the dimensional reduction offers a hope to formulate six-dimensional conformal field theories in terms of five-dimensional Lagrangian theories. To this end we show that the Fourier decompositions of six-dimensional correlation functions solve the Ward identities of the the $SU(1,3)$ symmetry, although more general solutions are possible. Conversely we illustrate how one can reconstruct six-dimensional correlation functions from those of a five-dimensional theory, and do so explicitly at 2- and 3-points. We also show that, in a suitable decompactification limit $Ω\to 0$, the correlation functions become those of the DLCQ description.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源