论文标题

$π(x)$和$π(((x+1)^{2})的边界的估计值 - π(x^{2})$

Estimates of the bounds of $π(x)$ and $π((x+1)^{2})-π(x^{2})$

论文作者

Wilson, Connor Paul

论文摘要

我们使用分析数理论中的原理在质数计数函数上显示以下界限$π(x)$,给出一个估计:$$ 2 \ log 2 \ geq \ limsup_ {x \ rightarrow \ rightarrow \ infty} \ frac {π(π(x)} \ frac {π(x)} {x / \ log x} \ geq \ geq \ log 2 $$所有$ x $都足够大。我们还猜想了$π((x+1)^{2}) - π(x^{2})$的边界,与Legendre在上述间隔中对素数的猜想相关,以便:$$ \ feft: \ lfloor \ frac {1} {2} \ left(\ frac {\ left(x+1 \右) x \ right)^{2}} {\ log \ left(\ log x \ right)} \ right \ rfloor \leqπ((x+1)^{2})^{2}) - π(x^{2}) \ lfloor \ frac {1} {2} \ left(\ frac {\ left(x+1 \右) \ rfloor $$

We show the following bounds on the prime counting function $π(x)$ using principles from analytic number theory, giving an estimate: $$2 \log 2 \geq \limsup_{x \rightarrow \infty} \frac{π(x)}{x / \log x} \geq \liminf_{x \rightarrow \infty} \frac{π(x)}{x / \log x} \geq \log 2$$ for all $x$ sufficiently large. We also conjecture about the bounding of $π((x+1)^{2}) - π(x^{2})$, as is relevant to Legendre's conjecture about the number of primes in the aforementioned interval such that: $$ \left \lfloor\frac{1}{2}\left(\frac{\left(x+1\right)^{2}}{\log\left(x+1\right)}-\frac{x^{2}}{\log x}\right)-\frac{\left(\log x\right)^{2}}{\log\left(\log x\right)}\right \rfloor \leq π((x+1)^{2}) - π(x^{2}) \leq $$ $$ \left \lfloor\frac{1}{2}\left(\frac{\left(x+1\right)^{2}}{\log\left(x+1\right)}-\frac{x^{2}}{\log x}\right) + \log^{2}x\log\log x \right \rfloor$$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源